CITY OF ABBOTSFORD GUIDELINES for using Traffic Modeling Tools for Transportation Impact Assessment (TIA)

SYNCHRO, SIMTRAFFIC AND SIDRA July 2023

ENGINEERING & REGIONAL UTILITIES 604-864-5514 eng-info@abbotsford.ca **abbotsford.ca**

CONTENTS

ABBREVIATIONS	4
1.0 PURPOSE OF THIS DOCUMENT	5
2.0 BACKGROUND	5
3.0 DOCUMENT STRUCTURE	5
4.0 BASICS FOR TRAFFIC MODELING FOR TIA'S	6
5.0 DATA INPUT GUIDELINES	8
6.0 REFERENCE	14

TABLES

Table 2-1: Modeling Tools Selection	6
Table 3-1: City of Abbotsford – Synchro Data Input Guidelines	8
Table 3-2: City of Abbotsford – SimTraffic Data Input Guidelines	12
Table 3-3: City of Abbotsford – Sidra Data Input Guidelines	13

APPENDIX

Appendix A: Example Model Reports

ABBREVIATIONS

ABBREVIATION	MEANING
FHWA	Federal Highway Administration
HCM 2000	Highway Capacity Manual 2000
HV%	Heavy vehicle percentage
ICU	Intersection capacity utilization
LPI	Leading pedestrian interval
OD	Origin-destination
pc/hg/l	Passenger car per hour of green per lane
Peds/h	Pedestrians per hour
TMC	Turning movement count
v/c	Volume-to-capacity

1.0 PURPOSE OF THIS DOCUMENT

The purpose of this document aims to provide the City of Abbotsford (City) specific parameters and establish clear expectations, for using Synchro, SimTraffic, and SIDRA, for the practitioner to follow at a *minimum* when preparing traffic analyses for a traffic impact assessment (TIA). The parameters, provided in this document, are intended for modeling purpose only. The practitioner is expected to have sufficient knowledge of Synchro, SimTraffic, and SIDRA before preparing a TIA.

2.0 BACKGROUND

This document outlines specific guidelines and recommended input parameters that are tailored specifically to Abbotsford. Practitioners responsible for analyzing the City's networks using Synchro or other traffic modeling tools must adhere to the guidelines provided in this document. Upon the completion of traffic analysis, the user is accountable for submitting the model files to the City. This allows City staff to review the modeling assumptions, input parameters, analysis, and the corresponding transportation network. If, at any point, the practitioner deems it necessary to deviate from the modeling approach or modify modeling parameters as described in this document, it is their responsibility to seek confirmation from City staff prior to conducting analysis and preparing a TIA. Failure to notify and confirm such changes may result in the rejection of any assumptions made by the practitioner that do not align with the guidelines and recommended model parameters of this document. Subsequently, revisions to the work will be required for resubmission.

Synchro is a widely utilized software tool at a macroscopic level, employed for the purpose of modeling, optimizing, managing, and simulating transportation networks. In the City of Abbotsford, Synchro is the default tool for conducting operational analysis for intersections. In addition to Synchro, SimTraffic and Sidra and advanced micro-simulation tool such as PTV Vissim may be required depending on the context of the work. Guidelines for SimTraffic and Sidra are also provided in this document. See **Section 4** for situations when certain tools should be considered.

3.0 DOCUMENT STRUCTURE

This document is composed of six main sections as follows.

- 1. Purpose of This Document
- 2. Background
- 3. Document Structure
- 4. Basics for Traffic Modeling for TIA
- 5. Data Input Guidelines
- 6. References

4.0 BASICS FOR TRAFFIC MODELING FOR TIA

ANALYSIS SCENARIOS

Analyses, using the appropriate traffic modeling tool, should be completed for each scenario, including background and post-development with and without proposed improvements, as applicable.

MODELING TOOLS SELECTION

By default, Synchro should be used for analyzing signalized and unsignalized intersections (i.e., two-way stop control and all-way stop controlled intersections). Sidra should be used for analyzing roundabouts / traffic circles. Additional modeling tools may also be required on a case-by-case basis. **Table 4-1** provides a brief summary of scenarios on when certain modeling tools can be considered. The practitioner should confirm the scope of modeling and modeling tool with the City prior to preparing a TIA.

Table 4-1: Modeling Tools Selection

MODELING	WHEN TO USE
TOOL	
Synchro	Default tool (unless notified otherwise) for analyzing signalized and unsignalized
	intersections (i.e., two-way stop and all-way stop intersections)
SimTraffic	When analyzing a series of signals along a corridor, especially if these signals are
	coordinated signals.
	• When the queue length of left turning traffic exceeds the available storage.
	• When significant queue lengths are present that may impact adjacent intersections.
Sidra	Roundabout / Traffic Circle
Vissim	While details and specific requirements of Vissim modeling are not part of this document,
	Vissim modeling should be considered and may be requested by the City when deemed
	appropriate. For example, locations which may include interchanges, considerable
	weaving between closely spaced intersections, high pedestrian and cyclist demands,
	dedicated bus lanes and unique intersection configurations.
EMME / Visum	The practitioner should consult with the City to confirm the growth assumptions for future
	background conditions.
	Depending on the scale of the study, the background growth is typically a blanket growth
	factor applied throughout the network. However, large proposed developments may
	require more refined growth and trip assignment assumptions, which may necessitate
	macroscopic modeling using EMME or Visum. While the details and specific requirements
	of such modeling are <u>not</u> included in this document, the practitioner should confirm these
	details with the City before conducting any analysis.

At the time of developing this document, Version 11 is the latest version of Synchro. All traffic analyses performed by the practitioner shall use the latest version of traffic analysis tool – Synchro 11 or later – and the analysis shall conform to the guidelines outlined in this document.

MODEL VALIDATION

Regardless of the modeling tools selected, the practitioner must validate the model results by ensuring that the results of the existing conditions modeling are comparable to observed field conditions, including delays and queue lengths. Additionally, the volume-to-capacity (v/c) ratio under existing conditions should generally be less than 1.1. In situations where the v/c ratios under existing conditions exceed 1.1, the practitioner should review traffic counts and

signal timing information to ensure they accurately reflect the field conditions. They should also adjust lost time as needed (see Section 5 for detailed guidelines on adjusting lost time).

The process of model validation, including the review of the existing base's model results against field conditions and any adjustments made to the model with rationale must be presented in the study.

5.0 DATA INPUT GUIDELINES

This section provides the guidelines for data input for Synchro, SimTraffic and Sidra. Detailed modeling values and approaches are provided in **Table 5-1**, **Table 5-2**, and **Table 5-3** for Synchro, SimTraffic and Sidra, respectively.

Table 5-1: City of Abbotsford – Synchro Data Input Guidelines

PARAMETER	VALUE / METHODOLOGY
Laning / Volumes	
Ideal saturated flow (pc/hg/l)	1850 pc/hg/l for all movements
Lost time adjustment	0.0 by default
(seconds)	Up to -1 second for model validation as needed
Leading detector (m)	Only needs to be entered for actuated signals.
	Code 2 detectors; detector one is placed at the stop bar (0.0 m); and detector two
	should be measured off aerial image, otherwise, a typical value of (15.0 m) should
	saturated flow 1850 pc/hg/l for all movements y/l) Image: the stop bar (0.0 by default) me adjustment 0.0 by default http://limited.indice.indinit.indice.indice.indinit.indice.indice.indice.indinit.indice.indi
Trailing detector (m)	Default value
Conflicting pedestrians (#/hr)	Based on TMC
Conflicting bicycles (#/hr)	Based on TMC
Peak hour factor	0.93 for the morning peak period
	• 0.94 for the afternoon peak period
Heavy vehicles (%)	truck volumes during the analysis periods: use HV% based on TMC for all
Traffic from Mid-Block	Input data if available
	 If a notable volume 'gap' appears between two modelled intersections on the
	same corridor, indicating a portion of traffic is from upstream mid-block
	sources, this field should be adjusted to reflect the field condition
Link OD volumes	Use Synchro default but modify as needed especially at interchange ramps to avoid
	'U-turns'. See example below.

PARAMETER	VALUE / METHODOLOGY
	Enter Zero for "from WBL Weight" for the SBL movement to avoid having traffic making 'U-turns' by making a westbound left turn at the north intersection and then a southbound left turn at the south intersection.
	It it: Origin-Destination Volumes It It it: Origin-Destination Volumes It It: It: Origin-Destination Volume It It: It: It: It: It It It: It: It: It: It: It It It:
Lane width (m)	Non-bus/truck route travel lanes:
	 3.2 m for non-curb general lane 3.4 m for curb lane
	3.4 m for curb lane Bus/truck route travel lanes:
	 3.3 m for non-curb general lane
	 3.6 m for curb lane
	Any lane width at intersections that is greater than 4.8 m is to be entered as two lane (i.e., a through and a short right turn lane)
Link speed (km/h)	50 km/h, unless otherwise is posted
Grade (%)	0% is used if the grade is relatively flat.
	• 5% or higher (actual grades) for steep approach
Storage length (m)	Actual storage lengths must be entered. The storage length excludes the taper.
Signal	
Signal control type	Currently, Abbotsford's traffic signals operate using one of the following control types:
	Actuated-Uncoordinated
	Semi-Actuated Uncoordinated
	 Actuated-Coordinated The City does not have pre-timed signals at this moment.
	The only does not have pre-timed signals at this moment.
	Consult the City to determine the type of signal control type for study intersections
	Pedestrian actuated signals:
	 If the pedestrian actuated signal is coordinated with an adjacent intersection,
	use "actuated-coordinated"
	If the pedestrian actuated signal operates freely on its own, use "semi-
	uncoordinated"

PARAMETER	VALUE / METHODOLOGY
Minimal initial (sec)	Main street through: 10 seconds
	Minor street through: 6 seconds
	Left turn (main and minor street): 7 seconds
Cycle Length	Existing base: refer to City's signal timing records
	Future scenario: use optimized cycle length using Synchro's built-in function
	and set the value between 60 seconds and 120 seconds
Recall setting	Consult the City for signal timing information. If this information is not available from signal timing records,
	For actuated-coordinated signal:
	"Coord-MIN" is default for the coordinated phase
	"None" for the side streets and remaining phases
	For free operation signal:
	"MIN" for the main street through phase
	"None" for the side streets and remaining main street phases
	Pedestrian Actuated Signal
	• If the pedestrian actuated signal is coordinated with an adjacent intersection,
	use "C-MIN" for vehicle phase and "Ped" for the pedestrian phase
	If the pedestrian actuated signal operates freely on its own, use "MIN" for
	vehicle phase and "Ped" for the pedestrian phase
	 If the pedestrian actuated intersection experiences minimal pedestrian crossing activities and using the above coding may result in much longer delays and
	queue lengths results compared to field observations sometimes. In this case, the practitioner can consider developing an additional scenario assuming the intersection operates as a stop-controlled intersection as a supplement scenario. This means a range of operational performances will be provided in the TIA that the stop-controlled scenario represents minimal delays to the main street traffic and the signal scenario represents longer delays to the main street traffic.
Pedestrian calls	Estimated pedestrian calls can be entered based on the pedestrian activities at
	study intersections:
	• 0 calls for <10 peds/h
	• 5 calls for >= 10 and <15 peds/h
	Enter a rounded value based on pedestrian volume estimates when between
	15 and 100 peds/h
	 100 calls for >100 peds/h
	This value needs to be checked again under future conditions to reflect the proposed development. For example, a site that may have minimal pedestrian activities today will be redeveloped in the future and the pedestrian calls need to be adjusted accordingly under the future scenarios.
Minimal pedestrian walk time (sec)	7 seconds
Minimal pedestrian	Reference traffic signal record
clearance time (sec)	• For the proposed configuration where crossing distance changes, use 1.2m/s walk speed across the entire pedestrian crossing. Use 1.0m/s if the intersection
	is near a school, hospital, medical facility, or senior housing.

PARAMETER	VALUE / METHODOLOGY
Leading Pedestrian Interval (LPI)	 LPI should be applied for improving pedestrian safety for future improvements when possible. LPI should not be used when there is a protected left turn phase that conflicts with the pedestrian phase of the crossing. For example, if the northbound left operates under fully protected operation, LPI should not be used for the pedestrian phase of the crosswalk crossing the west leg. Use 5 seconds as default and increase its duration to up to 7 seconds for large intersections. Use 'HOLD' for the LPI phase and subtract the LPI duration from the minimal pedestrian walk time. For example, when adding a LPI phase with 5 seconds of duration, use 2 seconds for minimal pedestrian walk time (7 seconds minus 5 seconds)
Reporting	 Use Synchro's default method and select the following attributes at the minimum: Intersection Capacity Utilization (ICU) for signalized intersection Lane Inputs Volumes Inputs Level of Service Info Timing Inputs V/C Ratios, Delays Queues HCM 2000 for unsignalized intersection (stop for minor and free flow for major road) HCM 2010 for all-way stop intersection. Note that the HCM 95th percentile queue result presented in the model report represent the vehicles and queue length will need to estimated by multiplying the number of vehicles in queue by average vehicle length including gaps between vehicles (7m). Include peak period and scenario information in the header and / or footer. Refer to Appendix A for example model outputs.

Table 5-2: City of Abbotsford – SimTraffic Data Input Guidelines

PARAMETER	VALUE / METHODOLOGY
Link OD volumes	OD patterns should be reviewed to reduce or eliminate certain turn combinations
	and better reflect any anticipated significant lane change behaviour. Special
	attentions should be paid at interchange ramp intersections to avoid 'U-turn' traffic.
Enter blocked intersection	In "Simulation Setting", adjust the Yes/No setting to reflect observed field conditions
Seeding & recording time	Seeding: 10 minutes as the minimal value and should increase depending on
	the size of the network. For example, if it takes 15 minutes for a vehicle to finish
	from one end of the network to the other end when the network is unloaded, the
	seeding period should be set at 15 minutes at the minimum.
	Recording: 60 minutes
Minimal number of runs	For <=3 intersections: 3 - 5 runs
	• For >3 intersections: 5 - 10 runs
	Using a "random Number Seed" of "0" for each file
Reporting	Include the 'Simulation Summary' information as part of the model outputs.
	If SimTraffic is only for providing queueing results, check 'queuing information'
	when configuring model reports. If other information such as delays and corridor
	travel time are used in the TIA analysis, check 'Performance Report' to include
	Delays by intersection and movement and 'Arterial Report' to include such
	results in the model reports.
	Refer to Appendix A for example model reports.

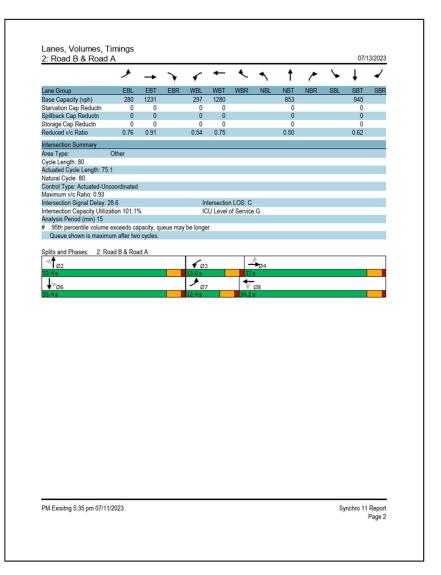
Table 5-3: City of Abbotsford – Sidra Data Input Guidelines

PARAMETER	VALUE / METHODOLOGY
Evaluation period (min)	60 min with a 15-min peak flow period
Peak hour factor	Based on TMC
Ideal saturated flow (pc/hg/l)	1,850 pc/hg/l for all movements
Heavy vehicles (%)	Based on TMC
Minimal lane width (m)	4.3 m for single-lane roundabouts4.5m for both lanes for dual-lane roundabouts
Capacity manual selection	Either HCM - Metric or Sidra Standard. However, the user must verify the capacity manual selection by confirming the model results are comparable to field conditions.
Reporting	Include Lane Level of Service and Movement Summary. See Appendix A for example model reports.

6.0 REFERENCE

- 1. CUBIC | Trafficware, Synchro Studio 11 Synchro Plus SimTraffic and 3D Viewer User Guide, 2019
- 2. City of Vancouver, British Columbia, Guidelines for Using Synchro Version 10 (Revision 1.4), June 2022
- 3. City of Calgary, Transportation Impact Assessment (TIA) Guidelines, April 2011
- 4. City of Toronto, Guidelines for Using Synchro 11 (including SimTraffic 11), January 2021
- Ministry of Transportation and Infrastructure, BC Supplement to TAC Geometric Design Guide, 3rd Edition, 2019

GUIDELINES | for Using Traffic Modeling Tools for Transportation Impact Assessment (TIA)

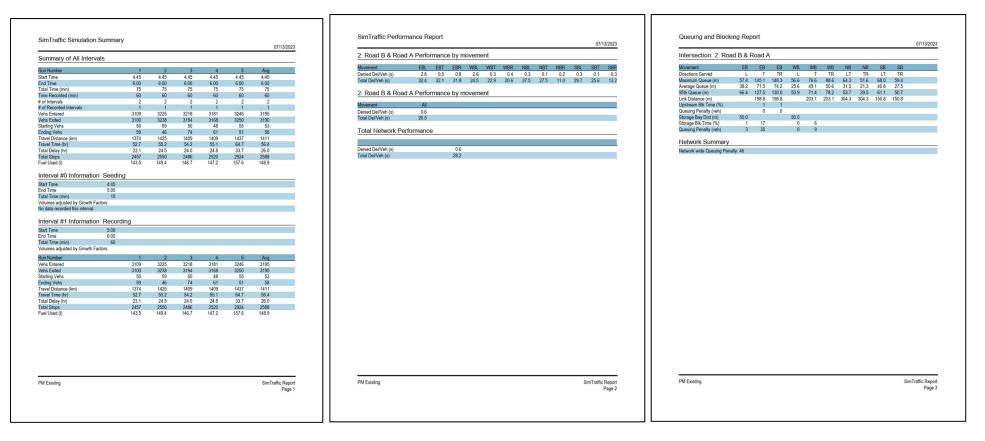

APPENDIX

ENGINEERING & REGIONAL UTILITIES 604-864-5514 eng-info@abbotsford.ca **abbotsford.ca**

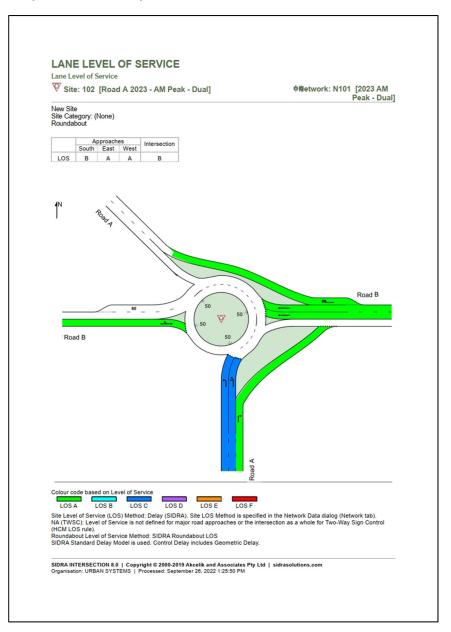
Appendix A Example Synchro Reports – Signalized Intersection

	٨	_	~	1	+	•	1	t	~	1	1	1
	501		•		LUDT		-		•		•	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Volume (vph)	200	↑1 → 800	250	150	↑ 700	200	100	41÷ 150	150	100	41> 300	150
Future Volume (vph)	200	800	250	150	700	200	100	150	150	100	300	150
Ideal Flow (vphpl)	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Lane Width (m)	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2
Storage Length (m)	50.0	3.5	80.0	50.0	0.0	80.0	0.0	3.2	0.0	0.0	3.2	0.0
Storage Lanes	1		0.00	1		0.00	0.0		0.0	0.0		0.0
Taper Length (m)	7.5			7.5		v	7.5		v	7.5		Ŭ
Satd. Flow (prot)	1666	3109	0	1666	3116	0	0	2995	0	0	3043	0
Flt Permitted	0.160	0105		0.140	0110			0.645	Ŭ		0.755	
Satd, Flow (perm)	275	3109	0	245	3116	0	0	1938	0	0	2306	0
Right Turn on Red	2.0	0100	Yes	240	0110	Yes		1000	Yes	Ŭ	2000	Yes
Satd. Flow (RTOR)		58			52			160			76	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		210.7			214.9			318.2			164.8	
Travel Time (s)		15.2			15.5			22.9			11.9	
Confl. Peds. (#/hr)	92		83	83		92	106		64	64		106
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Shared Lane Traffic (%)												
Lane Group Flow (vph)	213	1117	0	160	958	0	0	426	0	0	585	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0		6.0	6.0		6.0	6.0	
Minimum Split (s)	11.5	25.5		11.5	25.5		32.5	32.5		32.5	32.5	
Total Split (s)	12.4	33.0		13.6	34.2		33.4	33.4		33.4	33.4	
Total Split (%)	15.5%	41.3%		17.0%	42.8%		41.8%	41.8%		41.8%	41.8%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Mana	Maria		Marrie	Maria	_
Recall Mode	None 36.1	Min 28.1		None 37.1	Min 28.6		None	None		None	None	
Act Effct Green (s)								24.8			24.8	
Actuated g/C Ratio v/c Ratio	0.48	0.37		0.49	0.38			0.33			0.33	
Control Delay	33.6	38.3		19.8	25.9			15.6			24.6	
Queue Delay	0.0	0.0		0.0	23.9			0.0			24.6	
Total Delay	33.6	38.3		19.8	25.9			15.6			24.6	
LOS	00.0 C	00.0 D		B	20.0 C			10.0 B			24.0 C	
Approach Delay	U	37.5		D	25.0			15.6			24.6	
Approach LOS		57.5 D			23.0 C			13.6 B			24.0 C	
Queue Length 50th (m)	16.8	85.7		12.2	65.9			16.5			35.3	
Queue Length 95th (m)	#52.8	#133.4		27.2	92.1			30.8			53.8	
Internal Link Dist (m)	#52.0	186.7		21.2	190.9			294.2			140.8	
Turn Bay Length (m)	50.0	100.1		50.0	100.0			204.2			140.0	

APPENDIX


Example Synchro Report – Unsignalized Intersection (Stop Controlled for Minor Road and Free Flow for Major Road)

EBL	-	•	•	-	•	1	t	1	1	÷	-
EDL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
7	4		7	4			4			4	
200	400	50	150	400	50	5	10	5	5	10	
200	400	50	150	400	50	5	10	5	5	10	
	Free			Free			Stop			Stop	
	0%			0%			0%			0%	
0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0
213	426	53	160	426	53	5	11	5	5	11	
	106			64			83			92	
	3.3			3.3			3.2			3.2	
	1.2			1.2			1.2			1.2	
	8			5			6			7	
	None			None							
571			562			1824	1852	600	1791	1852	6
											6
4.1			4.1			7.1	6.5	6.2	7.1	6.5	
933			947			27	42	447	29	42	4
EB 1	EB 2	WB 1									
	0.0		0.0								
3.1		2.4									
_											
		<u> </u>									
tion		6.8 59.8%	14		of Service			В			
uuli		09.0% 15	IC.	o revel (of Gervice			D			
	200 0.94 213 571 571 4.1 213 213 213 213 0 933 0.23 7.0 10.0 A 3.1	200 400 Free 0% 0.94 0.94 213 426 3.3 1.2 8 None 571 571 4.1 22 77 73 33 EB1 EB2 213 479 213 479 213 479 213 479 213 479 213 0.53 333 1700 0.23 0.28 7.0 0.0 10.0 0.0 A 3.1	200 400 50 Free 0% 0.94 0.94 0.94 213 426 53 0.6 3.3 1.2 8 None 571 571 571 213 479 160 213 479 0 53 0 947 0.23 0.28 0.23 0.28 0.0 4.8 10.0 0.9.4 3.1 2.4	200 400 50 150 Free 0% - - 0.94 0.94 0.94 0.94 213 426 53 160 3.3 1.2 - - 8 - - - 571 562 - - 571 562 - - 77 83 - - 933 947 - 83 933 947 - 6 213 479 160 479 213 0 160 0 0 53 0 53 933 1700 947 1700 0.28 0.17 0.28 0.17 0.23 0.28 0.17 0.28 0.0 4.8 0.0 10.0 0.4 3.1 2.4 - -	200 400 50 150 400 Free Free Free 60% 0% 0.94 0.94 0.94 0.94 0.94 0.94 213 426 53 160 426 3.3 3.3 1.2 1.2 8 5 5 None None None 571 562 5 571 562 5 77 83 933 933 947 21 213 479 160 479 213 479 160 479 21 213 0 160 479 21 213 0 160 179 21 213 0 160 179 21 213 0 160 133 5 0 53 0 53 5 0.23 0.28 0.17 0.28 0.	200 400 50 150 400 50 Free Free Free Free Free Free Free Free 0% 0% 0% 0.94 12 2 2 2 2 2 2 2 77 77 78 33 933 947 5 5 0 5 5 0 5 0 5 0 5 5 0 5 0 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				


Intersection												
Intersection Delay, s/veh Intersection LOS	33 D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4 10			4	
Traffic Vol, veh/h	200	400	50	150	400	50	5		5	5	10	5
Future Vol, veh/h	200	400	50	150	400	50	5	10	5	5	10	5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	213	426	53	160	426	53	5	11	5	5	11	5
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	37.8			29.4			10.2			10.2		
HCM LOS	E			D			В			В		
Lane		NBLn1			SBLn1							
Vol Left, %		25%	31%	25%	25%							
Vol Thru, %		50%	62%	67%	50%							
/ol Right, %		25%	8%	8%	25%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		20	650 200	600 150	20 5							
LT Vol Through Vol		5 10	400	400	5 10							
RT Vol		5	400	400	5							
ane Flow Rate		21	691	638	21							
Geometry Grp		1	1	1	1							
		0.041	0.918	0.854	0.041							
		6.859	4.78	4.818	6.859							
Degree of Util (X)		Yes	Yes	Yes	Yes							
Degree of Util (X) Departure Headway (Hd)		res										
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		525	754	747	525							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap			754 2.852	747 2.892	525 4.861							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		525										
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		525 4.861 0.04 10.2	2.852 0.916 37.8	2.892 0.854 29.4	4.861 0.04 10.2							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		525 4.861 0.04	2.852 0.916	2.892 0.854	4.861 0.04							

Example Synchro Report – All-way Stop Intersection

Example SimTraffic Report

Example Sidra Model Report

MOVEMENT SUMMARY

V Site: 102 [Road A 2023 - AM Peak - Dual]

中降etwork: N101 [2023 AM Peak - Dual]

New Site Site Category: (None) Roundabout

Mov ID	Turn	Demand Total veh/h		Arrival Total veh/h		Deg. Satn v/c	Average Delay sec		Aver. Bac Queue		Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Averag e Speed km/h
									Vehicles Di veh	Distance				
South	h: Road													
1	L2	1188	7.0	1188	7.0	0.769	21.4	LOS C	6.3	46.8	1.00	0.59	1.00	37.9
1a	L1	42	0.0	42	0.0	0.644	20.5	LOS C	6.3	46.8	1.00	0.57	1.00	47.2
3	R2	210	9.0	210	9.0	0.125	3.6	LOSA	0.4	2.8	0.35	0.39	0.35	56.3
Appro	oach	1440	7.1	1440	7.1	0.769	18.8	LOS B	6.3	46.8	0.91	0.56	0.91	41.2
East:	Road	В												
5	T1	276	10.0	276	10.0	0.370	7.0	LOS A	0.7	5.1	0.96	0.74	0.96	47.4
6a	R1	62	0.0	62	0.0	0.031	1.8	LOSA	0.0	0.0	0.00	0.22	0.00	60.7
Appro	oach	338	8.2	338	8.2	0.370	6.0	LOS A	0.7	5.1	0.78	0.65	0.78	50.6
West	Road	В												
10b	L3	506	0.0	504	0.0	0.385	10.9	LOS B	0.0	0.0	0.00	0.61	0.00	57.0
11	T1	178	36.0	178	36.0	0.385	2.2	LOSA	0.0	0.0	0.00	0.61	0.00	54.1
Appro	oach	685	9.4	682 ^N	9.4	0.385	8.6	LOS A	0.0	0.0	0.00	0.61	0.00	56.3
All Ve	hicles	2463	7.9	2460 ^N	1 7.9	0.769	14.2	LOS B	6.3	46.8	0.64	0.58	0.64	46.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organiation: URAN SYSTEMS | Processed: Spenther 26, 2022 12556 PM Project: Uwslurban-systems.com/projects/Projects_KEL4782/0002/02I0-Design/Traffic/Stage 6A Detour/SIDRA/Steveston IC - Stage 6A Detour.sig8

GUIDELINES | for Using Traffic Modeling Tools for Transportation Impact Assessment (TIA)

APPENDIX