

ENGINEERING & REGIONAL UTILITIES DRAINAGE MASTER PLAN

Contents

Exec	cutive Summary	1
1.	Introduction	
1.1	City-wide Drainage	
1.2	Scope of Work	
1.3	Previous Drainage Studies	
1.4	Report Outline	
2.	Compilation of Drainage Projects	
2.1	Proposed Projects from Previous Studies	
2.2	Proposed Projects from Additional City Known Drainage Issues	
2.3	Proposed Projects in the City's Approved Drainage Capital Plan	
3.	Estimation of Project Cost for Studied Areas	
3.1	Update for 2016 OCP Land Use Total Impervious Area (TIA) Increase	3-1
3.2	Update for Climate Data	
3.3	Update for Change in Drainage Criteria	3-5
3.4	Update Capital Costs	
3.5	Summary of Drainage Projects for Studies Areas	
4.	Estimation of Project Cost for Unstudied Areas	
4.1	Representative Land Use Areas	
4.2	Drainage Infrastructure Density Analysis	
4.3	Cost Estimate for Unstudied Areas	4-3
5.	Project Prioritization	
5.1	Prioritization Matrix	
5.2	Prioritization Results	
6.	Estimation of Pump Station Upgrading Cost	
6.1	Pump Station and Floodbox Capacity Review	
6.2	Pump Station Discharge Head Upgrade	
6.3	Pump Station Resilience Review	
7.	Estimation of Dike Upgrading Cost	
7.1	Background	
7.2	Survey of Nearby Jurisdictions	
7.3	Dike Upgrade Methodology	
7.4	Dike Upgrading Cost Estimate	
7.5	Phasing	7-13
8.	Stormwater Management Policy and Criteria	
8.1	City's Existing Policy and Criteria	
8.2	Existing Source Control Bylaw Enforcement Challenges	
8.3	Stormwater Criteria from Other Jurisdictions	
8.4	Recommendations	

DRAINAGE MASTER PLAN

9.	Regional Facilities Management	9-1
9.1	Detention Facilities	
9.2	Infiltration Assessment	
10.	River Management Programs	10-1
10.1	Nooksack River Overflow	
10.2	Asbestos Cement Issue in the Sumas River	
10.3	Vedder River Sediment Management Program	
11.	Proposed Capital Expenditures	11-1
11.1	Drainage Upgrades in Studied Areas	
11.2	Drainage Upgrades in Unstudied Areas	
11.3	Planning Studies	
11.4	Pump Station Upgrades	
11.5	Dike Upgrading Cost	11-4
11.6	Summary of Total Drainage Capital Expenditures	11-5
11.7	Capital Spending and Reserve Balance	11-5
12.	Stormwater Drainage Fee Options	12-1
12.1	Background	
12.2	Drainage Fee Model	
12.3	Considerations on Cross Border Inflow	
12.4	Recommendations	
13.	Summary of Findings and Recommendations	13-1
13.1	Master Plan Key Components	
13.2	Total Drainage Capital Expenditures	
13.3	Recommendations	

Report Submission

Figures (at end of each Section)

1-4
2-3
2-4
3-8
3-9
3-10
4-4
7-15
9-3
9-4
9-5
9-6
10-4
11-6
11-7
12-2
12-3

Tables

Table 1-1: Outline of the DMP Report	
Table 3-1: 2005 and 2016 OCP TIA Comparison	
Table 3-2: Average Unit Flow versus TIA Relationship	
Table 3-3: Land Use Adjustment Factor for Peak Flow Estimates	3-3
Table 3-4: 10-Year and 100-Year Design Storm Summary from Previous Studies	
Table 3-5: Estimated Project Costs for Studied Areas	
Table 4-1: Representative Studied Land Use Areas Summary	
Table 4-2: Unstudied Land Use Areas Summary	4-2
Table 4-3: Estimated Costs for Unstudied Sub-Catchments	
Table 5-1: Project Prioritization Criteria and Weighing System	
Table 6-1: Pump Station Capacities	6-1
Table 6-2: Pump Station Backup Power Cost	6-2
Table 7-1: Nearby Jurisdictions Survey Summary	
Table 7-2: Proposed Long-term Dike Upgrading Criteria	
Table 7-3: Dike Upgrade Assumptions	
Table 7-4: Summary of Key Dike Characteristics by Reach	
Table 7-5: Unit Costs for Dike Upgrading	
Table 7-6: Class D Cost Estimate Summary Excluding Seismic Performance Improvements	
Table 7-7: Class D Cost Estimate Summary Including Seismic Performance Improvements	
Table 7-8: Indicative Cost Estimate for Medium-term Dike Upgrading	
Table 8-1: Summary of Existing Stormwater Criteria	8-2
Table 8-2: Existing Streamside Protection and Enhancement Area Widths	
Table 8-3: Summary of Policies Recommendations from ISMPs	
Table 9-1: Prioritization Criteria of Potential Regional Facility Areas	
Table 11-1: Summary of Drainage Projects, Timelines, and Costs for Studied Areas (by Project Type)	
Table 11-2: Summary of Drainage Projects, Timelines and Costs for Unstudied Areas	
Table 11-3: Summary of Timelines, and Costs for Planning Studies	
Table 11-4: Summary of Timelines, and Costs for Pump Station Upgrade Projects	
Table 11-5: Summary of Timelines, and Costs for Dike Upgrade Projects	
Table 13-1: Summary of Drainage Projects, Timelines, and Costs	
Table 13-2: Summary of Annual Drainage Capital Expenditure	13-5

Appendices

- Appendix A: List of Background Reports
- Appendix B: Proposed Drainage Projects
- Appendix C: Estimation of Project Cost for Studied Areas
- Appendix D: Estimation of Project Cost for Unstudied Areas
- Appendix E: Project Prioritization
- Appendix F: Dike Long Term Upgrades Cost Estimate
- Appendix G: Stormwater Criteria
- **Appendix H: Detention Facility Management**

Executive Summary

Introduction

The City of Abbotsford (City) adopted the new Official Community Plan (OCP) in June 2016. The City retained Kerr Wood Leidal Associates Ltd. (KWL) to prepare a Drainage Master Plan (DMP) for the entire City. The DMP allows the City to determine the required drainage infrastructure upgrades for the next 25 years (Year 2019-2043) to meet the expected demands of the projected population growth to 200,000 people and land use changes as per the 2016 OCP.

The City's drainage assets include approximately 500 km of gravity storm sewer and over 31,000 associated structures (manholes, headwalls, catch basins, etc.), 381 detention facilities, 526 km of ditches, 173 km of creeks, 1,296 culverts, 33 km of dykes, and 5 drainage pump stations.

Key Drainage Issues

The key drainage issues known to City staff include:

- localized flooding in the lowlands of Matsqui and Sumas Prairies,
- undersized drainage infrastructure in the urban and rural upland areas,
- periodic road closures caused by flooding,
- active erosion and instability within creek ravines and along river banks,
- sediment deposition and debris accumulation in lower reaches of channels, and
- lack of resilience for climate change and seismic events for the pump stations and dikes.

Capital Project List for Studied Areas

The City has completed many Integrated Stormwater Management Plans (ISMP), lowland drainage studies, as well as erosion, sedimentation, detention, and pump station studies. The recommendations from historical studies were reviewed and consolidated into a capital project list. The upgrading projects were updated to consistent criteria and cost estimates were updated to 2017 dollars. The capital project list was prioritized using a decision matrix and sorted into short, medium, and long term projects.

Dike Assessment

The dike upgrading assessment includes the City's three dikes, namely Matsqui Dike (Fraser River), Vedder Dike (Vedder Canal and Fraser River), and Sumas Dike (Sumas River, Saar Creek, and Arnold Slough). An indicative upgrading cost was estimated based on seismic and geometric upgrades to meet the Provincial "high consequence" performance criteria and 1 m sea level rise under climate change conditions, respectively.

Municipal Programs

The DMP also included the review of and recommendations for the following municipal programs:

- A Stormwater Management Policy and Criteria the review recommended that the City establish a Citywide Stormwater Source Control bylaw, additions to the Development Bylaw, and review, amendment and/or enforcement of other existing bylaws.
- Regional Facilities Management completed a City-wide detention facility inventory and creation of a GIS database, and a desktop assessment of potential new detention pond locations in areas downstream of proposed development was undertaken. A map of potential infiltration areas was also developed based on available soils data to guide the selection of source control measures and centralized stormwater management facilities for future development.
- River Management Programs details on the Nooksack River overflow, asbestos cement issue in the Sumas River and Vedder River sediment management programs are summarized for future reference.

 Stormwater Fees and Charges – a review of best practices of stormwater fees and charges in Canada and the US was provided and identified two commonly used fee structures, including a flat rate and a variable rate for the City's future consideration.

Drainage Capital Expenditures

The total capital expenditures are estimated to be \$447M for the next 25 years, with an average annual cost of approximately \$18M. An additional \$72M will be required for dike improvement beyond the 25 year study timeline (from 2044-2050). Section 11 provides a summary of the proposed drainage capital plan annual expenditures.

Approximately 77% of the total \$447M capital expenditure is attributed to dike improvement. Without dike improvement costs, the total capital expenditures are \$104M, with an average annual cost of \$4.2M. Many high-cost, lower priority projects (such as pump station upgrades, new detention ponds and storm diversion construction) were scheduled near the end of the master planning period (Years 2041-2043).

Recommendations

Based on the findings in the DMP, it is recommended that the City:

- Periodically Update DMP Update the DMP once every 5 years as additional floodplain and drainage studies are completed. Update the cost estimates for the currently unstudied areas as these areas are assessed. Conduct a back-up power study for the McLennan Creek, Matsqui Slough, DeJong, and Vanderloos pump stations. Consider developing a Dike Master Plan to refine the dike upgrading cost and to develop a feasible phased approach for dike upgrades.
- 2. **Update Policies -** Develop an enforceable City-wide Stormwater Source Control Bylaw for new development and redevelopment. Add requirements to incorporate climate change and fish friendly approaches in the Development Bylaw.
- 3. **DMP Implementation -** Adjust the annual capital budget to accommodate the capital costs of the drainage system upgrades. Incorporate growth-related upgrades and their costs in the City's Development-Cost-Charge program. Conduct feasibility and predesign phases for each project prior to design and construction. Conduct 19 future studies recommended in the DMP, including a feasibility study on Stormwater Fees and Charges to explore an appropriate rate structure and implementation strategy for the City.

1. Introduction

The City of Abbotsford (City) adopted the new Official Community Plan (OCP) in June 2016. The retained Kerr Wood Leidal Associates Ltd. (KWL) to prepare a Drainage Master Plan (DMP) for the entire City area. Figure 1-1 presents a map indicating the extents of the study area, major watershed boundaries and the existing land use as shown in the 2016 orthophoto. The DMP will allow the City to determine the required infrastructure upgrades for the next 25 years to meet the expected demands of the projected population growth to 200,000 people and land use changes as per the 2016 OCP.

1.1 City-wide Drainage

The City covers an area of 39,000 hectares and includes over 10 watersheds. The Downes Creek, Willband Creek, and Clayburn Creek watersheds drain north to the Fraser River through the Matsqui Prairie lowlands by pumping or gravity. The Marshall Creek watershed drains south into the Sumas River which drains northeast to the Fraser River through the Sumas Prairie. The Fishtrap Creek watershed drains south to the United States. The remaining rural watersheds, including the Bertrand Creek, Salmon River, Nathan Creek, Mt. Lehman Creek, and McLennan Creek watersheds, are contained within the rural drainage boundary. These watersheds drain west to the Township of Langley, or north to the Fraser River by gravity.

The City maintains approximately:

- 500 km of gravity storm sewer,
- over 31,000 associated structures (manholes, headwalls, catch basins, etc.),
- 381 detention facilities,
- 526 km of ditches,
- 173 km of creeks,
- 1,296 culverts,
- 33 km of dykes, and
- 5 major drainage pump stations.

The total value of the drainage system is in the range of \$700M, excluding roadside ditches and culverts in the rural upland drainage area, which are considered a part of road infrastructure.

Known Drainage Issues

The key drainage issues known to City staff include:

- localized flooding in the lowlands of Matsqui and Sumas Prairies and Rural Upland Area,
- undersized drainage infrastructure in the urban and rural upland areas,
- periodic road closures caused by flooding,
- active erosion and instability within creek ravines and along river banks,

DRAINAGE MASTER PLAN

- sediment deposition and debris accumulation in lower reaches of channels, and
- lack of resilience for climate change and seismic events (pump stations and dikes).

1.2 Scope of Work

The scope of this project is summarized below:

• Review and consolidate recommendations of previous Integrated Stormwater Management Plans (ISMPs) and lowland drainage studies. Review criteria / assumptions in each study and adjust to make consistent. Update the infrastructure sizing for adjusted criteria / assumptions and land use plan of 2016 OCP. Update cost estimates provided in these studies to 2017 dollars;

- Estimate potential project cost for drainage upgrades in the unstudied areas (areas not covered by previous drainage studies);
- Estimate long-term dike upgrading cost;
- Estimate pump station upgrading and backup power cost;
- Review options for stormwater fees and charges;
- Conduct a bylaw and policy review and recommend updates;
- Develop a prioritization matrix and establish a prioritized project list;
- Review and recommend updates to current DCC and capital programs; and
- Group prioritized projects into short, medium, and long term projects.

1.3 Previous Drainage Studies

The City provided background studies and reports as listed in Table A1 in Appendix A. The historical studies were categorized and are discussed in the following sections.

ISMPs

Since 2006, the City has completed three Integrated Stormwater Management Plans (ISMPs):

- Marshall Creek,
- Downes Creek, and
- Clayburn Creek.

The Willband Creek ISMP is underway. The Fishtrap Creek ISMP is scheduled to start in 2018/2019.

Lowland Drainage Studies

Phase 1 Lowland Drainage studies for Matsqui Prairie (completed 2013) and Sumas Prairie (completed 2017) have been undertaken. Phase 2 Drainage Study of Matsqui Prairie is scheduled to start in 2019.

The remaining rural watersheds will be studied in the future with reduced levels of effort due to limited land use change and development pressure.

Erosion, Sedimentation, Dike, Pump Stations, Detention Studies

The City has also completed many other studies including:

- Erosion and sedimentation studies for urban creeks and the Fraser River bank;
- Dike assessment and upgrades;
- Pump station studies to increase pumping capacity and resiliency, and

DRAINAGE MASTER PLAN

• Detention pond studies to increase storage volume to meet development needs.

Recommendations from environmental, flow monitoring and irrigation related studies were not included in the DMP proposed project list.

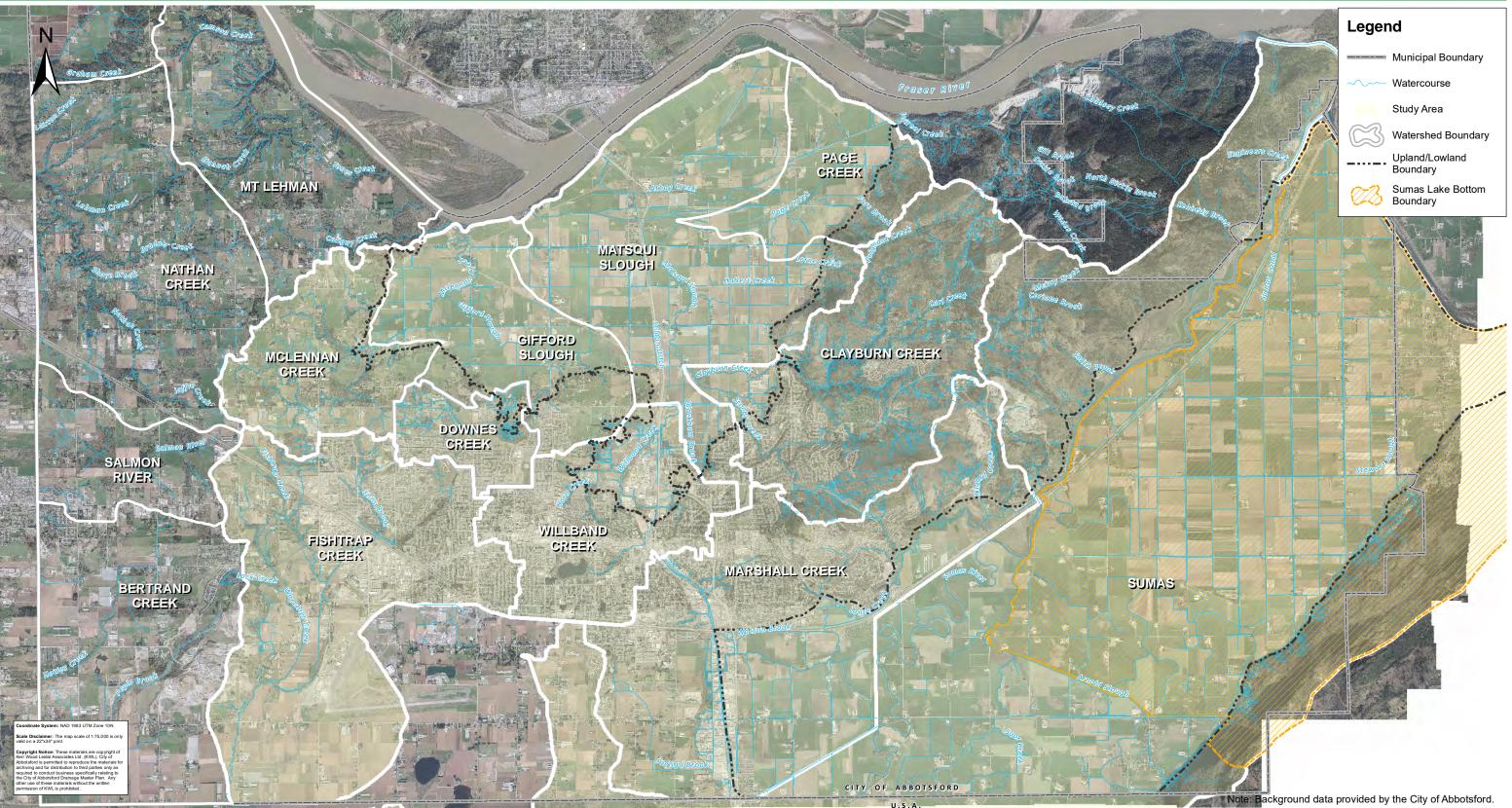
Recommendations from each study were extracted and compiled into a list of proposed projects as summarized in Section 2.

1.4 Report Outline

The outline of the DMP report is summarized in Table 1-1. It provides a road map of the report structure.

Section #		Section Title	Project Team	
1. Introduction		Introduction		
ct	2. Compilation of Drainage Projects			
roje	3.	Estimation of Project Cost for Studied Areas	Crystal Campbell, David Zabil,	
Construction Project Related	4.	Estimation of Project Cost for Unstudied Areas	Eva Li, and Bryce Whitehouse	
uction P Related	5.	Project Prioritization		
instr	6.	Estimation of Pump Station Upgrading Cost		
8 7. Estimation of Dike Upgrading Cost		Estimation of Dike Upgrading Cost	Mike Currie, Amir Taleghani, and Allison Matfin	
pal Im id	8.	Stormwater Management Policy and Criteria	Colwyn Sunderland, Robin Hawker, and Michael Gregory	
Municipal Program Related	9.	Regional Facilities Management	David Zabil, and Bryce Whitehouse	
Σd μ	10.	River Management Programs	City of Abbotsford	
ge ir	11.	Proposed Capital Expenditures		
Drainage Master Plan	12.	Stormwater Drainage Fee Options	Crystal Campbell, David Zabil, and Eva Li	
D	13.	Summary of Findings and Recommendations		

Table 1-1: Outline of the DMP Report



City of Abbotsford

Drainage Master Plan

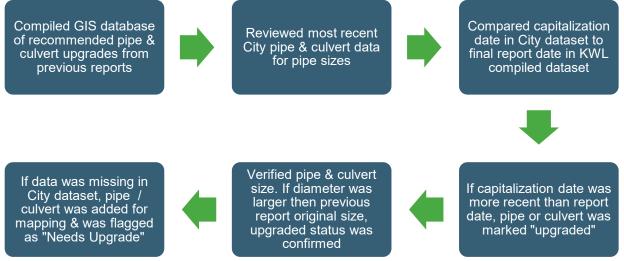
Project No.	510.152
Date	June 2018
Scale	1:75,000

Study Area and 2016 Air Photo

KW KERR WOOD LEIDAL

2. Compilation of Drainage Projects

2.1 Proposed Projects from Previous Studies


Proposed upgrades and their associated costs were extracted from the previous studies. Table B1 in Appendix B provides a list of all the proposed projects with comment on the project locations and status. Figure 2-1 shows the location of all the proposed projects from existing studies. The proposed upgrading projects can be broadly categorized as:

- Hydraulic Upgrades: storm sewer and culvert renewal;
- Creek Upgrades: berms, flood boxes, creek widening, and sediment management;
- Detention Facility Upgrades;
- Urban Creek Stabilization;
- Pump Station Improvements; and
- Studies.

Diking projects are listed separately under Section 7.

Exclusion of Projects Already Constructed

The City's GIS data was reviewed to identify culverts and storm sewers that have been upgraded since the completion of the previous studies. These projects were noted as completed from the proposed project list. The following methodology, as shown in flowchart below, was used to identify completed pipe projects:

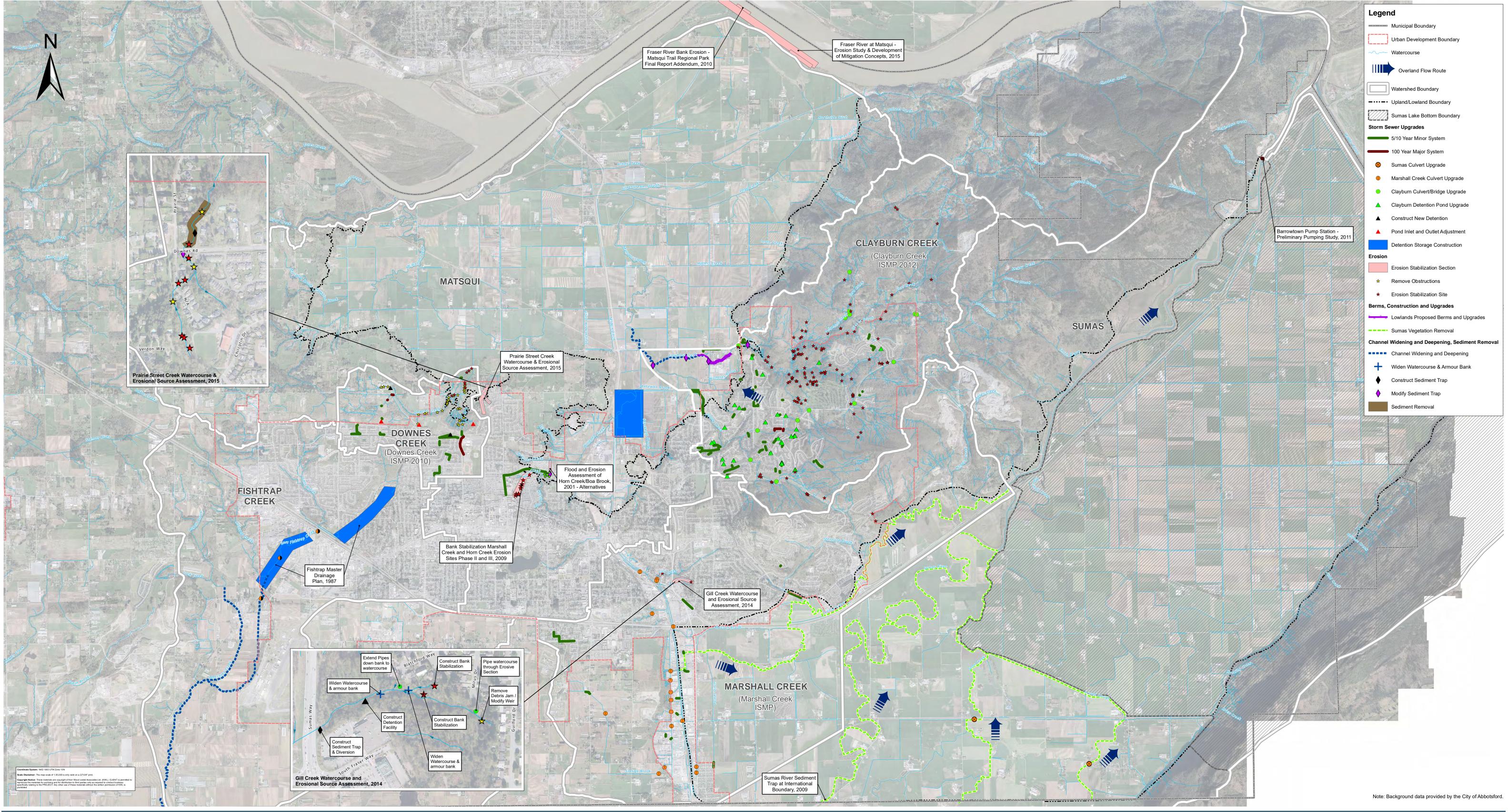
Flowchart Methodology to Identify Completed Pipe Projects

DRAINAGE MASTER PLAN

Non-pipe completed and/or constructed projects were identified by City staff, and removed from the project list.

2.2 Proposed Projects from Additional City Known Drainage Issues

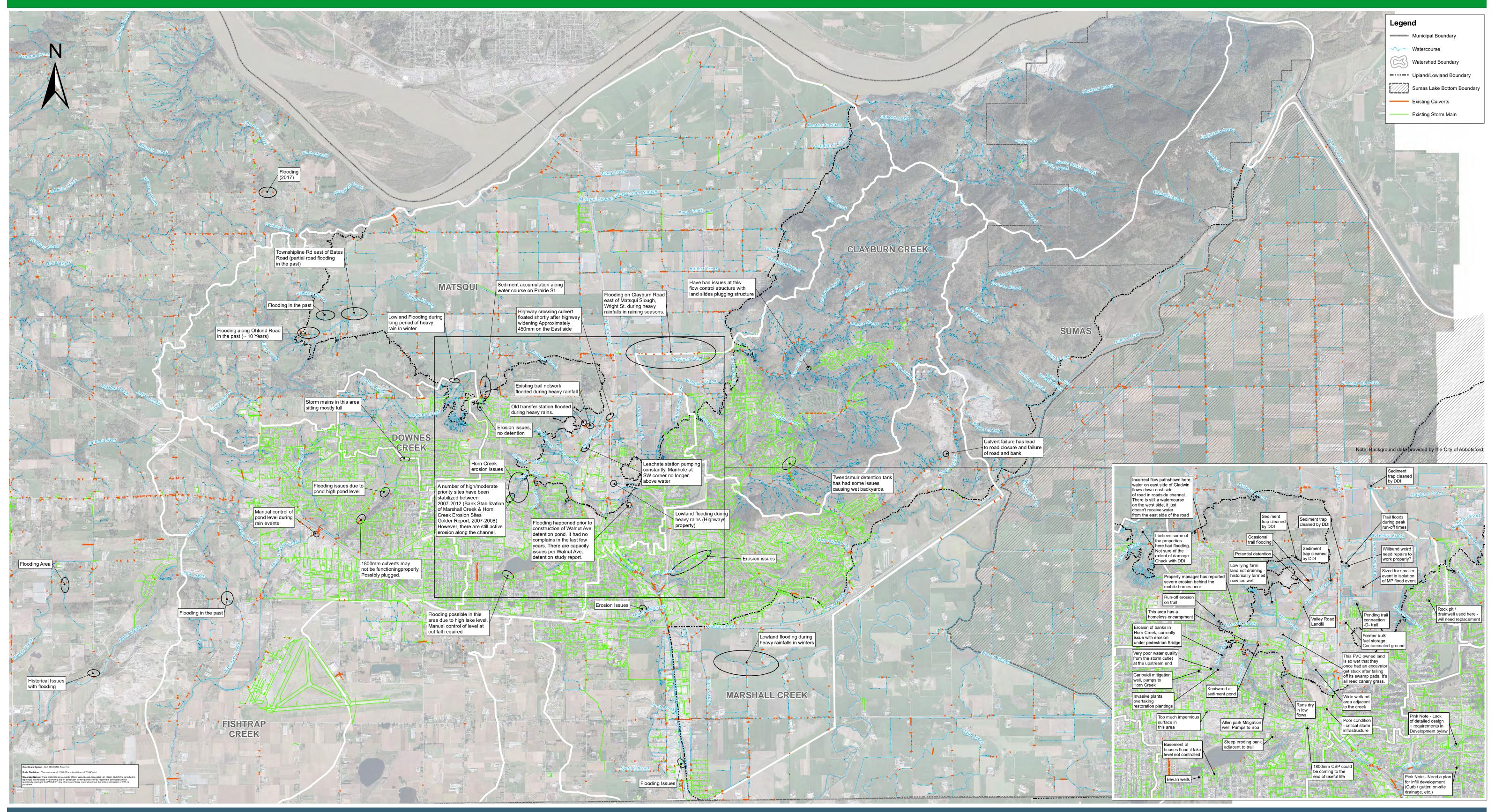
The City Departments also provided anecdotal information about additional known drainage issues as shown on Figure 2-2. If these issues were not covered under the existing studies, additional infrastructure upgrading projects or a follow-up study were added to the project list and costs estimated based on similar projects. Table B1 in Appendix B indicates the added projects/studies.


2.3 **Proposed Projects in the City's Approved Drainage Capital Plan**

The City provided copies of the approved *Drainage Capital Plan, namely 2017-2021 Drainage Capital Plan and 2018-2022 Project Summary Renewal & Replacement (RR) and Strategic Initiatives & Opportunities (SIO).* They included a list of proposed projects, studies and their approved funding under the capital plan for the next five years. Studies that were not already in the complied proposed project list were added.

City of Abbotsford Drainage Master Plan

Project No.	510.152
Date	June 2018
Scale	1:35,000


Proposed Projects from Previous Studies

KERR WOOD LEIDAL consulting engineers

Figure 2-1

City of Abbotsford Drainage Master Plan

Project No.	510.152
Date	June 2018
Scale	1:35,000

Known Drainage Issues

KERR WOOD LEIDAL consulting engineers

3. Estimation of Project Cost for Studied Areas

The existing studies were conducted from the 1980's to present. During this time, the drainage criteria, rainfall data and land use has evolved, and inflation has occurred. The base assumptions in each study were reviewed and standardized to bring the projects to a consistent criterion.

Project costs were updated to reflect a 2017-dollar value. Some studies identified proposed improvements but did not provide cost estimates. For these, KWL estimated order of magnitude costs based on similar project types.

The following sections describe the adjustments made.

3.1 Update for 2016 OCP Land Use Total Impervious Area (TIA) Increase

New 2016 OCP

Abbotsford's new OCP (bylaw 2600-2016), was adopted in June 2016. It plans for a future population of 200,000 people and focuses 75% of new growth in existing neighbourhoods. This will be achieved by supporting a 'city of centres', including a City Centre, Urban Centres, and Neighbourhood Centres, and promoting growth in areas where it is financially sustainable by using existing infrastructure and amenities. The 2016 OCP map showing future land use is provided in Figure 3-1. To meet the infrastructure requirements of the planned growth, the DMP outlines projects to meet the demands.

Comparison with Previous OCPs

Based on the previous drainage studies used, three versions of OCP land use maps were obtained representing 1980, 1996 and 2005 conditions. All the drainage studies and ISMPs were based on the 2005 OCP land use, except for the Fishtrap Creek Master Drainage Plan (1987) which used the 1980 OCP. GIS analysis was performed to identify land use change areas between the 2005 OCP and 2016 OCP.

For simplicity, the study areas were divided into the sub-catchments shown in Table 3-1 and average total impervious area (TIA) values were calculated for each using the area-weighted method. The computed TIAs for both the 2005 and 2016 OCPs are compared in Table 3-1. The Fishtrap Creek Master Drainage Plan was completed 30 years ago and was considered an unstudied area for the purposes of this DMP due to the outdated recommendations.

As shown in Table 3-1, the largest increases in TIA are expected in the lowland and rural areas (D2, M1, S2, S4, Mat1 and Mat2 located in the Sumas and Matsqui Prairies). The urban areas experience relatively smaller TIA changes, with some reductions estimated. The 2005 and 2016 land use categories and TIA values assumed for each type of land use were reviewed by the City and are included in Table C1 in the Appendix C.

The 2016 and 2005 OCP land use comparison is presented in Figure 3-2. In a few cases, TIA decreases in the 2016 OCP land use due to a more detailed land use categorization system used for the 2016 OCP. For example, Urban Large Lot in 2016 has a lower percentage impervious (40%) than Urban Residential (60%) in 2005. This may not reflect actual decrease in impervious coverage in the 2016 OCP. The conservative approach taken was to not reduce flows or infrastructure sizes in areas where the TIA was estimated to decrease.

Weterebed	Sub Cataba and	OCP Avg TIA (%)		Average TIA
Watershed	Sub-Catchment ¹	2005	2016	Change (%)
	C1	44	44	0
Clauburg	C2	37	31	-6
Clayburn	C3	24	15	-9
	C4	15	6	-9
Deurnee	D1	40	39	-1
Downes	D2	16	30	13
	M1	18	32	14
Marshall	M2	60	59	-1
	M3	40	35	-5
	S1	17	8	-9
0	S2	5	20	15
Sumas	S3	1	9	8
	S4	5	20	15
	Mat1	8	26	18
Matsqui	Mat2	17	30	13
	Mat3	6	8	2

Table 3-1: 2005 and 2016 OCP TIA Comparison

Peak Flow Adjustment for Increased TIA

The proposed hydraulic upgrade projects located within the TIA increase areas (D2, M1, S2, S3, S4, Mat1, Mat2 and Mat3) may require upsizing to account for the increased peak flow estimates. The *Matsqui Prairie Drainage Study* did not provide any hydraulic upgrade recommendations, therefore only the pipes (storm sewer and culverts) in the Downes Creek, Clayburn Creek and Marshall Creek watersheds, and two culverts in the Sumas watershed were included in the land-use-based upgrading.

A trend of unit area 10-year and 100-year return period runoff associated with varying impervious coverages was developed by randomly sampling storm sewers in the 2012 Clayburn ISMP XP-SWMM model. Catchments with similar TIA values were grouped, and their peak flows averaged to provide a data point. This process was repeated for various TIAs, and the results for the 10-year return period are shown in Table 3-2. The relationship between peak unit flow and TIA is plotted in Figure 3-3.

Table 3-2: Average Unit Flow versus TIA R	Relationship
---	--------------

Average TIA %	Average Unit Runoff (m³/s/ha)
2.0%	0.021
23.0%	0.081
50.0%	0.093
80.2%	0.097
96.7%	0.101

Based on the change in the percentage impervious from the date of the study to the new 2016 OCP land use, the adjustment factor for peak flow was estimated using the relationship in Figure 3-3. The resulting factors are summarized in Table 3-3. The land use factor was only applied to the pipes that were identified as undersized in previously completed studies and only in sub-catchments indicating a TIA increase (see Table 3-1). The adjustment factor shown in the table below also includes a 10% increase for climate change as discussed in the next section. This 10% climate change factor was also applied to projects located in areas with no expected increase in TIA.

Exiting % TIA	Expected Future %	% Impervious	Adjustme	nent Factor ¹		
Exiting % TIA	TIA	Change	10-Year	100-Year		
5	20	15%	2.57	2.01		
16	30	14%	1.48	1.42		
18	32	14%	1.37	1.34		
40	40	0%	1.10	1.10		
1 Adjustment Eactor includes land use change and climate change components						

Table 3-3: Land Use Adjustment Factor for Peak Flow Estimates

1. Adjustment Factor includes land use change and climate change components.

3.2 Update for Climate Data

Design Rainfall Used

The design storms used in the previous studies were reviewed and summarized in Table 3-4. The previous design rainfall intensities and volumes are higher than the volumes and intensities in the mostup-to-date version of the Abbotsford IDF curve created in 2014, and uses rainfall data from 1977 - 2001. Therefore, no adjustments were made to account for difference in design storms in this project.

Climate Change

The 2016 Metro Vancouver *Climate Projections for Metro Vancouver* report predicted a 10% increase in rainfall volume by 2050 and a 20% increase by 2080. To account for the effect of climate change on the proposed infrastructure upgrades, the City selected the 10% climate change factor for this study. This factor will be reviewed in the future when more information becomes available.

In areas with increasing TIA, the climate change increase was added on to the land use change factor as noted in Section 3.1, and if the there was no change in TIA, the 10% climate change factor alone was used. For simplicity, this rainfall increase factor was applied to the peak flows. In reality, a 10% change in rainfall may result in a peak flow change of less than, or in certain unique instances more than, 10% depending on factors such as initial moisture condition, depression storage, infiltration rate, etc. In general, increasing the peak flow by 10% likely results in flows that are slightly higher than if the rainfall change was applied to the hydrologic/hydraulic model and peak flows recalculated.

% Diff*

Downes ISMP*** Average

Intensity

(mm/hr)

Abbotsford Airport

(1977 - 2001)

Volume

(mm)

% Diff*

-0.6% 2.7% 3.2% 5.4%

8.7%

-0.4%

1.3%

4.2%

5.5%

7.8%

	VV		7				FIS					
Duration	Volume (mm)	Average Intensity (mm/hr)	% Diff*	Volume (mm)	Average Intensity (mm/hr)	% Diff*	Volume (mm)	Average Intensity (mm/hr)	% Diff*	Volume (mm)	Average Intensity (mm/hr)	c ·
10-Year D	esign Stor	m										
1-hr.							19.0	19.00	-7.9%	20.5	20.50	
2-hr.				27.5	13.75	0.1%	30.0	15.00	9.2%	28.2	14.10	1
6-hr.	45.8	7.63	3.4%	44.6	7.43	0.7%	46.8	7.80	5.1%	45.7	7.62	
12-hr.	65.3	5.44	1.9%	67.1	5.59	4.7%	67.2	5.60	4.9%	67.6	5.63	

5.2%

-0.3%

1.8%

6.2%

5.2%

3.85

19.50

9.65

7.38

5.13

Abbotsford Airport

(1977 - 2001)

DRAINAGE MASTER PLAN

Marshall Creek ISMP

Table 3-4: 10-Year and 100-Year Design Storm Summary from Previous Studies

Willband MDP

9.73

7.02

Avg of Abbotsford Airport &

Mission West Abby

(1977 & 1963 - 1983)

% Difference between design storm volume used in project and current 2014 Abbotsford Airport IDF (1977 - 2001)

2.7%

0.9%

* Average Intensity was interpreted from IDF curve graph, a slight interpretation difference could lead a high difference in intensity

92.4

39.0

57.9

88.6

123.1

* Downes ISMP mentioned in text that the 2014 Abbotsford A IDF curve was used but no table was provided with numbers. Therefore there would be no change or difference and is excluded from this analysis

88.8

27.5

38.0

64.8

87.6

144.0

Fishtran MDP**

3.70

27.50

19.00

10.80

7.30

6.00

Abbotsford Airport

(1977 - 1983)

1.1%

-7.2%

-2.8%

14.0%

5.0%

23.0%

95.5

29.5

39.6

59.3

88.1

126.2

Clavburn ISMP

3.98

29.50

19.80

9.88

7.34

5.26

Avg of Abbotsford Airport &

Mission West Abby

(1977 & 1963 - 2001)

24-hr.

1-hr.

2-hr.

6-hr.

12-hr.

24-hr.

Gauge

Used

100-Year Design Storm

58.4

84.2

3.3 Update for Change in Drainage Criteria

The drainage criteria used in the previous studies was compared with the current design criteria (2011). All the previous projects used the 10-year design event to size minor storm sewer upgrades and the 100-year design event to size major storm sewer upgrades. The same design criteria govern today; therefore, no adjustment factors were required for the reassessment of pipe sizes or costs.

3.4 Update Capital Costs

Inflation

To update the project cost estimates to the 2017-dollar value, the Engineering News Record (ENR)¹ Construction Cost Indexes (CCI) were used. ENR evaluates cost indexes for 20 cities across the US and Canada (Toronto and Montreal). Toronto indexes were used for 1990 – 2013, and Seattle, WA used for 2015 – 2017. Inflation for each year is summarized in Table C2 in Appendix C.

The building and construction cost indices for ENR's individual cities use the same components and weighting as those for the 20-city national indices. The city indices use local prices for Portland cement and 2 x 4 lumber and the national average price for structural steel. It uses local union wages, plus fringes, for carpenters, bricklayers, iron workers, and laborers.

Construction Cost Factors

A consistent construction cost factor was applied to all the proposed projects. The factor adds 68% to the project construction cost and includes the following components:

- Mobilization / Demobilization and Bonding 8%,
- Construction Engineering 20%, and
- Contingency 40%.

For project costs that already included a factor that was more or less than 68%, the factor was stripped from the total cost, and then 68% was added. For existing projects without construction factors, 68% was directly added to the original cost.

Project Costs to 2017 Dollar Value

Project costs from previous reports were brought up to a 2017 dollar value by applying inflation rates and adjusting the construction cost factors.

For proposed non-pipe type of projects, including erosion protection, sediment management, channel widening, detention ponds, berm construction, etc., the inflation factor and contingency cost were applied to adjust the original cost to the 2017 value.

For pipe upgrade projects, including storm sewers and culverts, the additional upgrading factors such as land use change, design rainfall and criteria change, were applied. In the case of the scaled peak flow estimates requiring a storm sewer or culvert to be larger than the original recommended upgrade size, the storm sewer project was costed as a "Class D" estimate with 2017 unit rates. The updated project cost to a 2017 value is presented in Table C3 in Appendix C. The table also includes the conduit length and the proposed conduit size for the 2016 OCP conditions. Project costs from the City's Approved 2017 and 2018 Capital Project list were kept the same as before.

¹ <u>http://www.enr.com/economics/historical_indices</u>

Class 'D' Cost Estimate and Assumptions

The cost estimates provided are Class 'D' accuracy. This means that the general requirements for upgrading including size and approximate depth of excavation, as well as some general site conditions are known. The projects identified have not considered the following factors affecting construction:

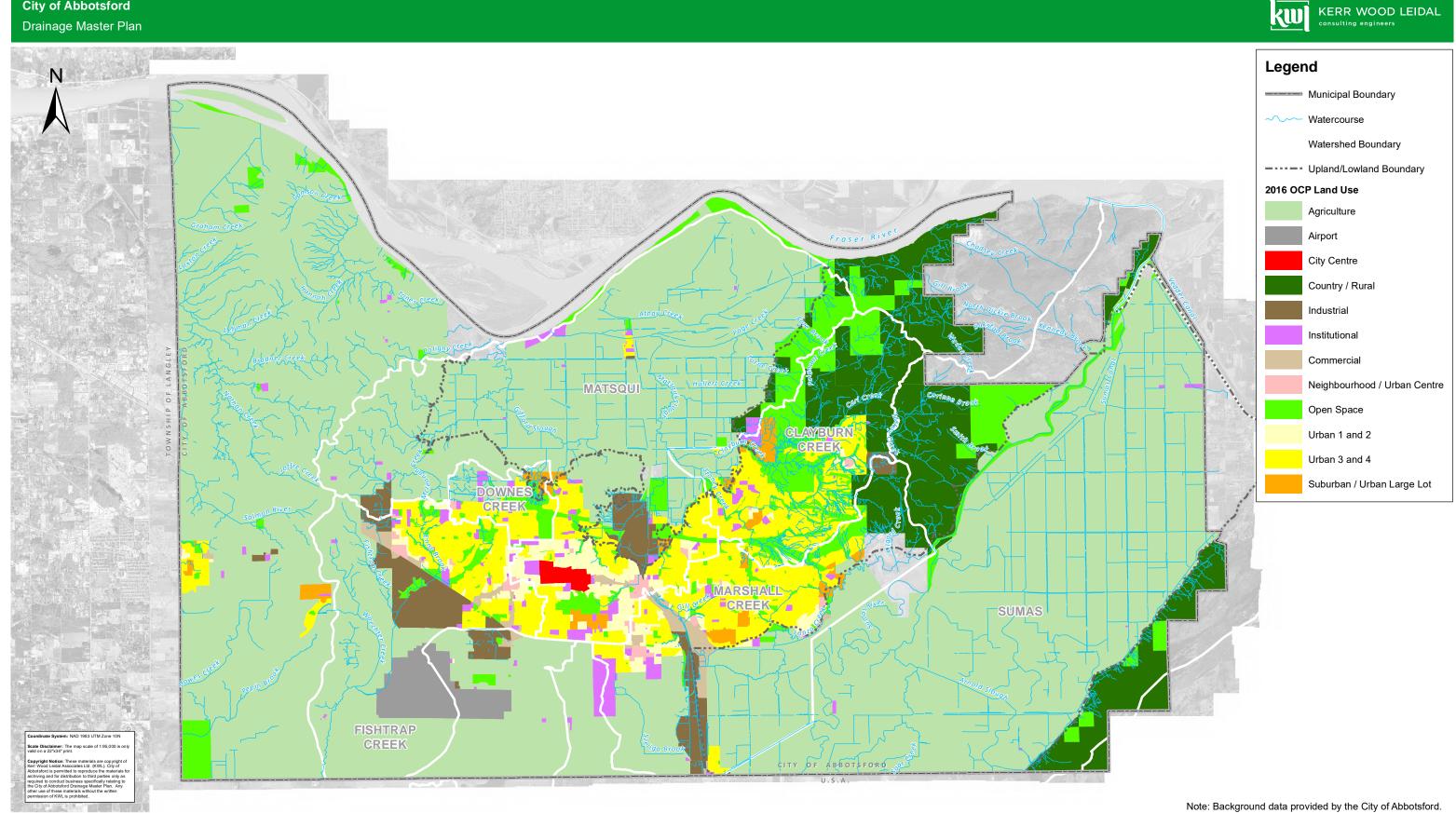
- relocation of adjacent services (gas, hydro, telephone, etc.);
- special permitting requirements (fisheries windows, contaminated site, etc.);
- geotechnical issues requiring special construction such as pile-supported piping, buoyancy problems or rock blasting; and
- critical market shortages of materials.

As the above factors have not been allowed for in estimating construction unit rates or project design, the contingency amount of 68% were applied to all projects.

GST has not been included in the estimated project costs. The unit prices, including 6% of contractor mark-up/overhead, reflect KWL's recent experience with similar work, and therefore represent the best prediction of actual (2017) costs as of the date prepared. Actual tendered costs would depend on such things as market conditions generally, remoteness factor, the time of year, contractors' workloads, any perceived risk exposure associated with the work, and unknown conditions.

3.5 Summary of Drainage Projects for Studies Areas

The proposed projects from studied area have been compiled in Table 3-5 by project type. Timelines and costs were also provided.


Table 3-5: Estimated Project Costs for Studied Areas

Dreiset Tyme	Time Frame		Capital Cost		DCC Cost		Total Cost	
Project Type	From	То	Total	Annual	Total	Annual	Total	Annual
Storm Sewer and Culvert Renewal		=				-		
Short Term	2019	2023	\$4,800,000	\$960,000	\$1,526,000	\$305,200	\$6,326,000	\$1,265,200
Medium Term	2024	2028	\$4,800,000	\$960,000	\$834,000	\$167,000	\$5,634,000	\$1,127,000
Long Term	2029	2043	\$13,218,000	\$881,000	\$1,332,000	\$89,000	\$14,661,000	\$977,000
At Time of Development	2019	2043	\$0	\$0	\$15,953,000	\$638,000	\$15,953,000	\$638,000
Clayburn Creek Lowland Works								
Short Term	2019	2023	\$0	\$0	\$1,592,000	\$1,592,000	\$1,592,000	\$1,592,000
Medium Term	2024	2028	\$0	\$0	\$572,000	\$572,000	\$572,000	\$572,000
Long Term	2029	2043	\$0	\$0	\$225,000	\$225,000	\$225,000	\$225,000
Detention Facility Upgrades					Ż			
Short Term	2019	2023	\$571,847	\$114,369	\$0	\$0	\$571,847	\$114,369
Medium Term	2024	2028	\$786,761	\$157,352	\$0	\$0	\$786,761	\$157,352
Long Term	2029	2043	\$85,965	\$5,731	\$0	\$0	\$85,965	\$5,731
Long Term - New Ponds	2040	2043	\$0	\$0	\$6,066,621	\$1,516,655	\$6,066,621	\$1,516,655
Irban Creek Stabilization								
Short Term	2019	2023	\$0	\$0	\$1,405,000	\$281,000	\$1,405,000	\$281,000
Medium Term	2024	2028	\$0	\$0	\$1,405,000	\$281,000	\$1,405,000	\$281,000
Long Term	2029	2043	\$0	\$0	\$922,497	\$61,500	\$922,497	\$61,500
liscellaneous								
Short Term*	2019	2023	\$685,000	\$137,000	\$0	\$0	\$685,000	\$137,000
Long Term*	2041	2043	\$0	\$0	\$5,531,924	\$1,843,975	\$5,531,924	\$1,843,975
lote: Miscellaneous short term* – Gill Creek Culvert He	adwall Rehal	oilitation; Misc	cellaneous Long tern	n* – Horn Creek S	Storm Diversion.			

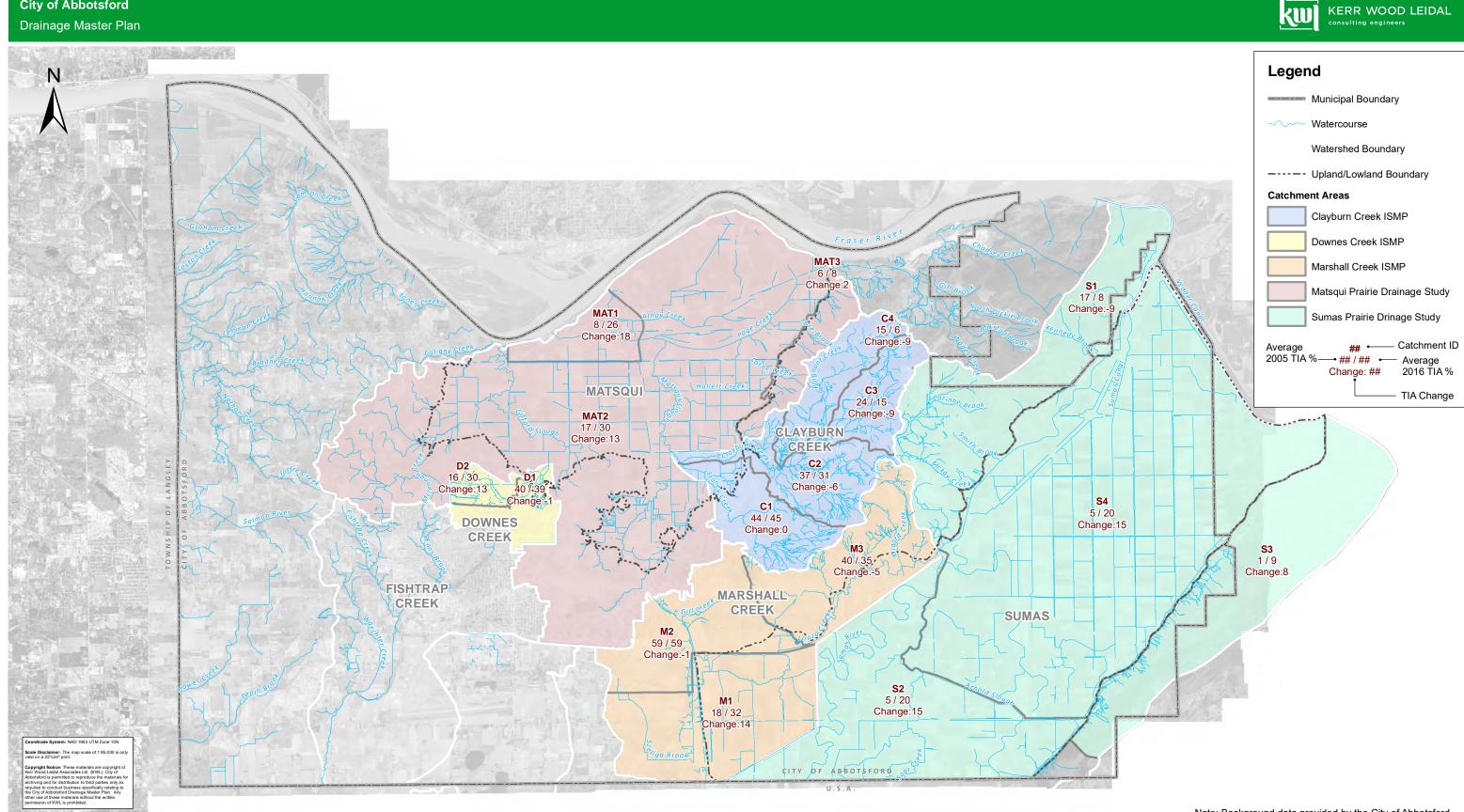
City of Abbotsford

Project No.	510.152
Date	June 2018
Scale	1:95,000

2016 OCP Land Use

City of Abbotsford

Project No.


Date

Scale

510.152

June 2018

1:95,000

2016 and 2005 OCP Land Use Comparison

Note: Background data provided by the City of Abbotsford.

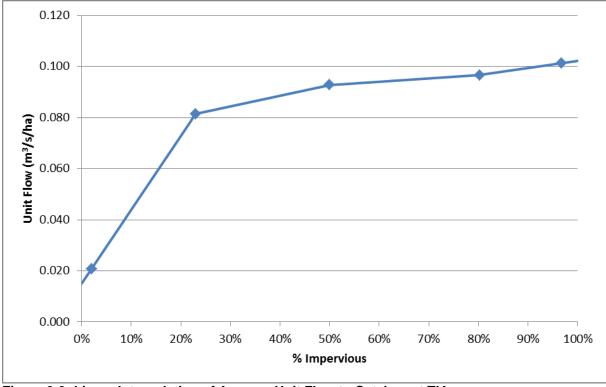


Figure 3-3: Linear Interpolation of Average Unit Flow to Catchment TIA

4. Estimation of Project Cost for Unstudied Areas

Approximately 19,530 ha of the City area has not been studied in the past, see Figure 4-1. This accounts for 50% of the City area and presents a data gap in preparing a comprehensive City-wide DMP. The City has future plans for assessing these areas, however placeholder costs are required at this time to include in the City-wide DMP. The methodology for estimating costs for these areas is discussed in this section. The estimated projects and costs will be updated once future studies are completed.

4.1 Representative Land Use Areas

Representative land use sub-catchment areas were selected from the 2005 OCP to represent typical land use within the studied areas. Land use in the 2005 OCP was the base for all the drainage studies completed over the past decade. A normalized upgrading cost (\$/unit) for each type of land use was developed by examining the projects within these representative sub-catchments. The review led to the selection of eleven sample land use areas with reasonable catchment size and distinct land use type, as shown in Table 4-1 and Figure D1 in Appendix D.

Drainage projects within the selected areas were categorized into four types:

- storm sewer;
- culvert;
- detention pond; and
- stream (used for vegetation removal, erosion protection and sediment management type projects).

The total upgrading costs (2017 \$ value) for each type were calculated using GIS.

	Selected Land Use	Area		Upgrading Cost Summary				
Sub-Catchment	Area (2005 OCP)	(ha)	TIA	Storm Sewer	Stream	Detention	Culvert	
Clayburn Creek	Mixed Urban Residential Area	341	50%	\$6,634,000	\$0	\$193,400	\$1,022,300	
	Conservation Area	323	1%	\$0	\$0	\$0	\$0	
	Rural Residential	334	10%	\$0	\$0	\$0	\$0	
Marshall Creek	Industrial / Commercial / Institutional	555	85%	\$1,071,800	\$0	\$0	\$2,286,300	
	Mixed Residential	106	20%	\$0	\$0	\$0	\$0	
	Upland Agriculture	489	50%	\$34,200	\$0	\$0	\$1,569,600	
	Upland Agriculture	73	20%	\$0	\$0	\$0	\$0	
Downes Creek	Mixed Urban Residential Area	139	50%	\$3,421,900	\$0	\$0	\$0	
	Commercial / Institutional	7	85%	\$0	\$0	\$0	\$0	
	Conservation Area	105	1%	\$864,500	\$151,400	\$189,200	\$0	
Sumas Prairie	Lowland Agricultural	2846	20%	\$269,100	\$0	\$0	\$1,138,400	

Table 4-1: Representative Studied Land Use Areas Summary

The unstudied area was divided into five land use areas, as shown in Figure 4-1. Similarly, typical land use areas were identified, and TIAs were calculated based on 2016 OCP for each sub-catchment, as listed in Table 4-2.

Sub-Catchment	Land Use (2016 OCP)	Area (ha)	TIA
	Mixed Residential	147	50%
Bertrand/Salmon/Nathan/	Upland Agricultural	7879	20%
Mt. Lehman Creek	Conservation	245	1%
	Industrial /Institutional	35	80%
	Upland Agricultural	1012	20%
Clearbrook Rd	Mixed Residential	2	50%
Clearbrook Ru	Conservation	19	1%
	Commercial/Industrial/Institutional	269	85%
	Mixed Residential	588	60%
Fishtrap Creek	Upland Agricultural	1523	20%
	Conservation	130	1%
	Industrial /Institutional	791	85%
	Rural Residential	483	10%
Vaireel Creek	Mixed Residential	129	50%
Valleel Greek	Upland Agricultural	1	20%
	Conservation Area	105	1%
	Lowland Agricultural	5490	20%
Sumas Lake Bottom	Lowland Residential	565	10%
Area	Conservation	107	1%
	Institutional/Choice of Use	9	90%

Table 4-2: Unstudied Land Use Areas Summary

4.2 Drainage Infrastructure Density Analysis

For both studied and unstudied areas, drainage densities were estimated to facilitate the cost calculation. They include:

DRAINAGE MASTER PLAN

- storm sewer density (m/ha);
- culvert density (unit/ha);
- detention pond density (unit/ha);
- ditch density (m/ha); and
- stream density (m/ha).

The linear length of the drainage channel and pipe, and the unit number of the culvert and detention pond were calculated for each studied typical land use area and for the unstudied areas using GIS. The total length and total unit number were divided by the drainage area and the calculated densities are provided in Table D1 in Appendix D.

4.3 Cost Estimate for Unstudied Areas

For unstudied areas, costs were estimated based on a selected studied area with the same land use and the most-similar drainage density. The costs from Table 4-1 were adjusted to estimate the unstudied area costs using the following factors:

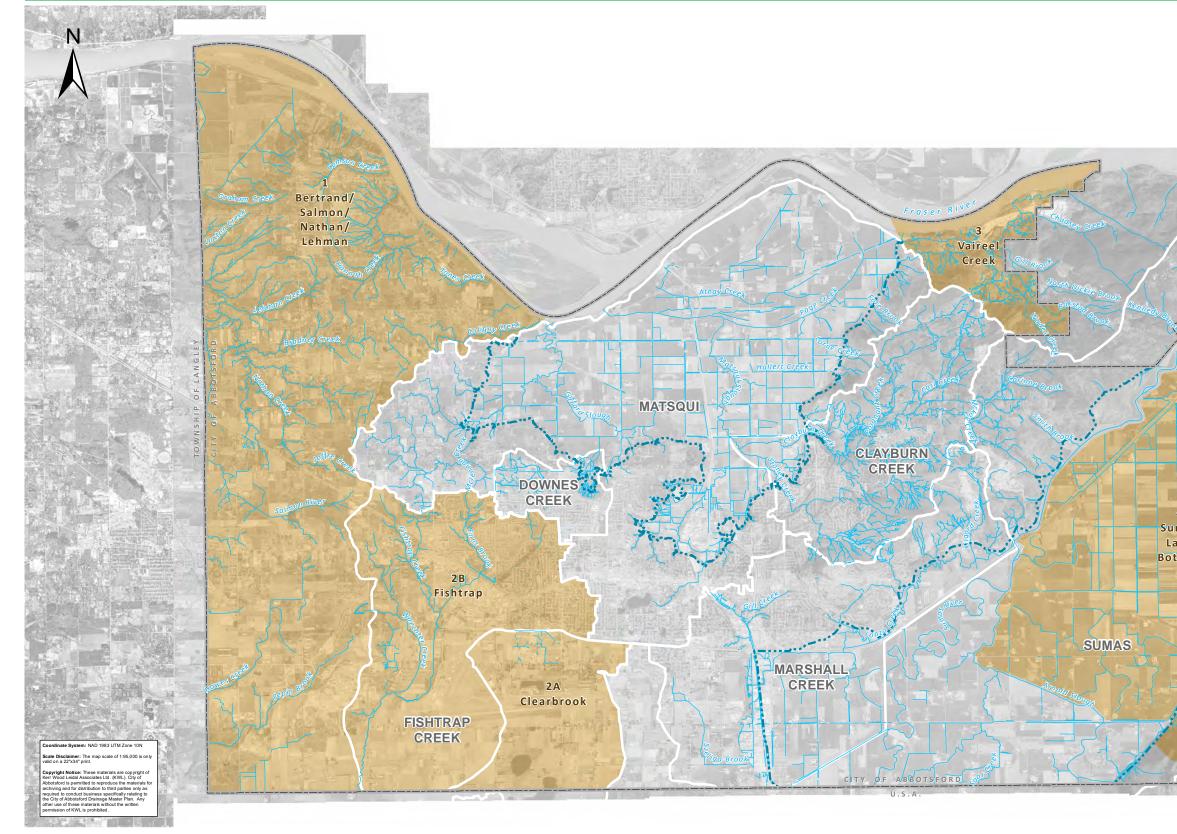
- Area adjustment factor: to account for the area difference between the studied and unstudied areas.
- Density adjustment factor: to account for the density difference between the studied and unstudied areas.

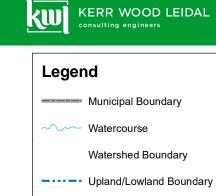
The final cost estimates for the unstudied area are provided in Table 4-3.

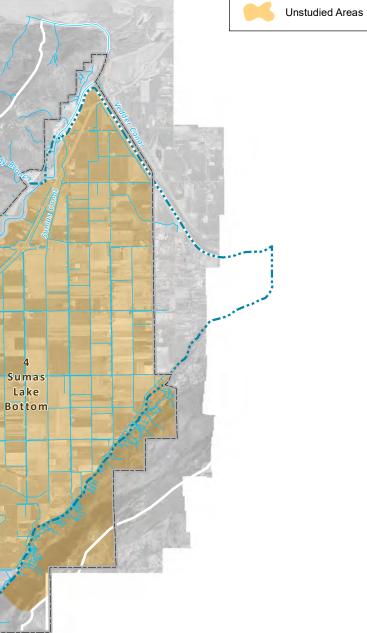
Sub-Catchment	Area (ha)	Land Use	Upgrading Cost	Total Cost	
	147	Mixed Residential	\$2,229,000		
Bertrand / Salmon / Nathan / Mt. Lehman	7879	Upland Agricultural	\$298,000	¢0,000,000	
Creek	245	Conservation	\$417,000	\$2,989,000	
	35	Industrial /Institutional	\$45,000		
	1012	Upland Agricultural	\$942,000		
Clearbrook Rd	2	Mixed Residential	\$42,000	¢1 202 000	
Cleardrook Ru	19	Conservation	\$113,000	\$1,292,000	
	269	Commercial/Industrial/Institutional \$195,000			
	588	Mixed Residential	\$11,183,000	\$22,900,000	
Fich Trep Creek	1523	Upland Agricultural	\$7,521,000		
Fish Trap Creek	130	Conservation	\$2,766,000		
	791	Industrial /Institutional	\$1,430,000		
	483	Rural Residential	\$0		
Voireel Creek	129	Mixed Residential	\$13,000	¢149.000	
Vaireel Creek	1	Upland Agricultural	\$58,000	\$148,000	
	105	Conservation Area	\$77,000		
	5490	Lowland Agricultural	\$3,867,000		
Sumas Lake Bottom Area	565	Lowland Residential	\$0	¢4 004 000	
Sumas Lake Bottom Area	107	Conservation	\$72,000	\$4,004,000	
	9	Institutional/Choice of Use	\$65,000		

Table 4-3: Estimated Costs for Unstudied Sub-Catchments

The costs in Table 4-3 are placeholder estimates for use in long term planning and budgeting and should be updated once the unstudied areas are analyzed in detail. The total estimated costs for the unstudied areas represents approximately a third of the total (studied plus unstudied) costs for these project types.


DRAINAGE MASTER PLAN


City of Abbotsford


Drainage Master Plan

Project No.	510.152
Date	June 2018
Scale	1:95,000

Unstudied Areas

Note: Background data provided by the City of Abbotsford.

5. Project Prioritization

The consolidated capital project list was analyzed to determine the priority of the projects from studied areas. The rationale of the prioritization matrix and recommended short to long-term upgrades are discussed in the following sections.

5.1 **Prioritization Matrix**

A decision matrix was developed as a systematic way of prioritizing drainage projects for the studied areas within the City of Abbotsford. A majority of the proposed projects (excluding studies, dike improvements, new detention facilities, and pump station upgrades) were ranked as short-term, midterm and long-term based on the following criteria:

- technical rating,
- urgency,
- risk/consequence,
- location: urban containment boundary,
- community impact,
- economic impact, and
- agricultural impact.

For each of the criteria, a score of 1 to 5 (where 5 represents highest urgency) was assigned to each project. Criteria considered to be more important than others were given higher weighting (e.g. higher maximum scores) than others. These scores were then multiplied together to determine an overall priority score for each project. With all the projects compiled for studied areas, prioritization criteria were developed for each project type (storm sewers, culverts, detention facilities, channels). The prioritization matrix and weight system are presented in Table 5-1.

5.2 **Prioritization Results**

Applying the prioritization matrix to the projects resulted in the prioritization of Project Initiation Time shown in Table C3 in Appendix C. The application of the criteria is summarized in Table E1 in Appendix E which shows the score (from 1 to 5) for each project.

Table 5-1: Project Prioritization Criteria and Weighing System

Criteria						Weighting (1- least important, 5 – most important)			
Projects	Storm Sewe	r Upgrades	Culve	t Upgrades		Detention Facilities		Erosion and Sedimentation	
	30%		30%		30%		30%		
Technical Rating	1 - Minor drai 2 - Major drai 3 – Minor dra 4 - Minor drai 5 – Major dra	nage, DCC; inage, 1 pipe nage, 2 or mo	size up; pre pipe siz	es up;		1 – long term project; 3 – mid term project; 5 – short term project (defined in historical studies)	1		
	20%	0 1 1	15%		15%		10%		
Urgency	1 - q/Q = 1 or 2 - q/Q = 1 - 3 - q/Q = 1.2 4 - q/Q = 1.5 5 - q/Q > 2.	I.2; - 1.5;		L		 1 – new pond; 3– inlet/outlet modification to meet different criteria; 5 – inlet/outlet modification to meet same criteria. 	1 - outsi 3 - imme	ide future land use change area; ediately d/s of future land use change area; le of future land use change area.	
	20%		15%		15%		20%		
Risk / Consequence	1 - Priority 5; 2 - Priority 4; 3 - Priority 3; 4 - Priority 2; 5 - Priority 1 (as defined in	ISMP)			1 – drain to lowlands; 5 – drain to steep creeks.	3 - Indir	hreat to public or private properties; ect threat to public or private properties; at to public or private properties.	
Urban	10%		10%		10%		10%		
Containment Boundary	1 – outside of 5 – inside of l								
-	10%		10%		10%		10%		
Community Impacts	1 - 0% or <0 2 - 1% to 5% 3 - 6% or <10 4 - 11% or < 5 - >15% Ave	0% Average T 15% Average	Change; IA Change TIA Chang			1 -not a known issue; 5 - known issue (based on 2017 issue map from City).	•		
	10%	0	10%		10%		10%		
Economic Impacts	1 - < 400mm 2 - 400 - 600r 3 - 600 - 700r 4 - 700 - 1200 5 >1200mm F	nm Pipe Size; nm Pipe Size;)mm Pipe Size	- - 7	1		1 - high cost to construct; 3 - medium cost to construct; 5 - low cost to construct.		1	
Environmental/ Agricultural Impact	0%		10%	1 - Lowlands 5 - Uplands	10%	1 - without erosion issues; 5 – with erosion issues.	10%	1 - no negative impact to aquatic life & ha 3 - indirect impact to aquatic life & habitat 5 – negative impact to aquatic life & habit	
Total	100%		100%		100%		100%		

		Channel Upgrades					
	20%						
	20%						
area;	 1 – little benefit until other works completed; 3– increase level of protection; 5 – provide protection to currently unprotected developed area. 						
	20%						
;							
	10%						
	10%						
		impact; habitat disruption (mitigated); nabitat disruption (mitigated over					
	10%						
& habitat; bitat; nabitat.	10%	1 - no benefit to agriculture; 5 – improves agriculture.					
	100%						

Estimation of Pump Station Upgrading Cost **6**.

6.1 Pump Station and Floodbox Capacity Review

The current pump station capacities were reviewed as part of the Matsgui and Sumas Drainage studies and the required capacities to meet the Agriculture and Rural Development Subsidiary Agreement (ARDSA) criteria. The Matsqui Slough, McLellan Creek & Barrowtown Pump Stations capacities and additional required capacities to meet various criteria are summarized in Table 6-1 below.

w w	/inter, 10-Year, 5-I	Day	Summer, 10-Year, 2-Day				
Current Pump Capacity (m³/s)	Additional Required Pumping Capacity (m ³ /s)	Current Floodbox Capacity (m³/s)	Current Pump Capacity (m³/s)	Additional Required Pumping Capacity (m³/s)	Current Floodbox Capacity (m³/s)		
Combined Matsqui Slough & McLellan Creek Pump Stations							
16.55	Very Little	N/A	16.55	40	N/A		
Barrowtown Pump Station							
39.8	29	226.5 ¹ 81 ²	39.8	125	226.5 ¹ 0 ³		

...

Assumes closed floodboxes during Fraser River Freshet.

Additional capacities based on meeting the ARDSA criteria.

The City recommended that upgrades to pump stations to achieve the 10-year 2-day summer ARDSA criterion will not be pursued at this time as flooding issues are currently experienced only in the winter months. Therefore, it is recommended that the upgrade to the Barrowtown Pump Station to meet the 10-year 5-day ARDSA criterion be considered. The required additional capacity for pumping the Sumas River at the Barrowtown Dam is 29 m³/s.

6.2 Pump Station Discharge Head Upgrade

The Barrowtown Pump Station was mainly designed to pump Lake Bottom Area. It uses Pump 1 and 2 to pump water from the Sumas River to the Fraser River during freshet. The Barrowtown pumps are able to run at their full capacities, in high speed mode, only when the pumping head is sufficiently high (>3m). During times when the water levels on the upstream and downstream sides of the pump station are nearly equal, the pumps are run in low speed mode to prevent cavitation which would result if the pumps were run in high speed mode (KCB, 2011). Static and dynamic methods were proposed to increase the system head requirement. The estimated construction cost is \$1,750,000 in 2017 dollars. A cost benefit/risk analysis is recommended to determine whether either is an economically viable option.

6.3 Pump Station Resilience Review

For the Barrowtown pump station and the other four pump stations along the Matsqui Dike (McLennan Creek, Matsqui Slough, DeJong and Vanderloos), there is no backup (standby) power system in place to maintain pumping operations in the event of a utility power failure. In 2013, a preliminary back-up power study was completed for the Barrowtown pump station. The probable cost of backup power was estimated to be \$4,131,000 in 2017 dollars. To increase resiliency along the Matsqui Dike, high level backup power costs were estimated for the other four pump stations. The estimated costs for the four Mastsqui Dike pump stations total \$3,100,000 based on the electrical replacement cost in the Pump Station PSAB 3150 Study (Earth Tech, 2008) and the backup power cost for the Barrowtown pump station. The summary of the backup power cost estimate is provided in Table 6-2. A detailed study is recommended to update these high-level cost estimates for these stations.

Pump Station	Backup Power Cost Estimate (2017 dollar with contingency)
Barrowtown	\$4,131,000
McLennan Creek	\$1,000,000
Matsqui Slough	\$1,900,000
DeJong	\$100,000
Vanderloos	\$100,000

Table 6-2: Pump Station Backup Power Cost

These projects and costs are added into the overall DMP.

7. Estimation of Dike Upgrading Cost

The dike upgrading assessment includes three distinct dikes: Matsqui Dike (Fraser River), Vedder Dike (Vedder Canal and Fraser River), and Sumas Dike (Sumas River, Saar Creek, and Arnold Slough). The City requires an indicative cost estimate for determining an appropriate approach to long-term funding of such activities. This section summarizes the relevant background, methodology, assumptions, and resultant dike upgrading cost estimate. Supporting geotechnical engineering advice was provided by exp Services (EXP). Figure 7-1 shows the study area and each of the subject dikes.

The content of this section reflects the final technical memorandum for Dike Upgrading Cost Estimate dated June 6, 2018.

7.1 Background

Lower Mainland Flood Management Strategy

The Lower Mainland Flood Management Strategy (LMFMS) is a collaborative initiative that has the participation of 50 governmental and non-governmental agencies working together to better protect Lower Mainland communities from major Fraser River and coastal flooding (Fraser Basin Council, 2017). The Fraser Basin Council (FBC) serves as project manager. Phase 1 of the LMFMS was completed in 2016. The key outcome was an analysis of Fraser River and coastal flood scenarios, both present day and year 2100, taking into account sea level rise and other projected impacts of climate change. Phase 2 is now underway and is aimed at developing a regional flood strategy report and recommendations for action, including cost-sharing options.

Matsqui Dike

The Matsqui Dike parallels the Fraser River along Matsqui Prairie from Upper Sumas Mountain Road at the east end to the railway near Harris Road at the west end (approximately 11.5 km total length). The dike was originally constructed between 1920 and 1922 and was last upgraded in 2007 in advance of an expected high peak freshet on the Fraser River (Golder Associates, 2007). The 2015 and 2016 dike inspection reports note that the dike is in excellent shape, with regular vegetation maintenance being completed, and no items requiring immediate attention (City of Abbotsford, 2016) (City of Abbotsford, 2015).

The dike has four pump stations: McClennan Creek, Matsqui Slough, Dejong, and Vanderloo. The railway crosses the dike in two locations that are lower than the design crest elevation (Golder Associates, 2007). The dike is generally set back from the Fraser River except for the lock-block wall section which runs along the river-side (north) of the JAMES Wastewater Treatment Plant (WWTP). A secondary dike runs along the land-side (south) of the JAMES WWTP and as such does not protect the plant from Fraser River flooding.

The reach of the Fraser River adjacent to the Matsqui Dike has historically been prone to channel shifting and bank erosion. Some sections were riprapped in the 1970s and 1980s. Since 1997, there has been a tendency for erosion arcs to form along the upstream half of the dike (between Sumas Mountain and the northerly tip of Matsqui Prairie (arcs A-G). Mitigation work was completed on arc E in 2014 (Golder Associates, 2014). Six mitigation options were identified for arcs A-D, and the preferred option, "submerged rock spurs" (Northwest Hydraulic Consultants, 2015), is to be confirmed through consultation with First Nations and is subject to environmental approval. Arcs F and G were assessed for relative to risk to the dike and mitigation work was completed in 2017 on Arc F.

Vedder Dike

The Vedder River/Canal conveys flow for a length of approximately 13 km from the Chilliwack River to the Sumas River downstream of the Trans Canada Highway. The Vedder River/Canal system was built between 1920 and 1922 for two primary purposes:

- 1. redirect Chilliwack River flow away from the Chilliwack area to the north (to mitigate frequent flood occurrences); and
- 2. support the reclamation of Sumas Lake (which would become Sumas Prairie).

Following a major flood in 1975, the dike works along the Vedder River/Canal were significantly upgraded. The City of Abbotsford portion of the dike was further upgraded in 2007 in advance of an expected high peak freshet on the Fraser River. The design dike elevation for this portion of the dike is based on the Fraser River flood, as the Vedder Canal flood level is lower than that of the Fraser (Golder Associates, 2007).

The Vedder River Management Area (VRMA) is the active river channel and floodplain area between the setback dikes. The VRMA (325 ha) is owned by the Province and is considered a public use area. The Vedder River Management Area Plan (VRMAP) was prepared in 1983 and updated in 2015 (Vedder River Management Committee, 1983) (Tetra Tech EBA, 2015). The VRMAP identifies river reaches that may require sediment removals to maintain flood capacity and monitors erosion of the river banks. The Vedder River Management Area Committee (VRMAC) manages sediment removals.

Most of the Vedder dike system is owned and operated by the City of Chilliwack. The City of Abbotsford portion of the Vedder Dike parallels the Vedder Canal on the southwest side from Keith Wilson Road to the confluence with the Sumas River. The dike then follows the Sumas River upstream to the Barrowtown Dam and Pump Station. The total length of the City of Abbotsford portion of the Vedder Dike is approximately 4.5 km. The 2015 and 2016 dike inspection reports noted the dike is in excellent shape, with regular vegetation maintenance being completed, and no items requiring immediate attention (City of Abbotsford, 2016) (City of Abbotsford, 2015).

The Barrowtown Dam portion of the dike is considered part of both the Vedder Dike and the Sumas Dike, and the dike crest elevation on the dam is achieved by a 300 mm high curb (Golder Associates, 2007). North Parallel Road adjacent to the dam was widened in 2016 (WSP, 2017).

In 2008, geotechnical investigations and analysis was completed for the Vedder Dike to assess the impacts of the emergency raise of the dike in 2007, and this assessment recommended that a toe berm be constructed north of Highway 1 to address stability concerns (Golder Associates, 2008).

Sumas Dike

The Sumas Dike begins at Vye Road to the south and winds along Sumas Prairie to the Barrowtown Dam and Pump Station (approximately 16.7 km total length), with the purpose of protecting the reclaimed Sumas Lake bottom from flooding. The dike alignment parallels Arnold Creek, interceptor ditch, and Spree Creek before reaching the Sumas River. Marshall Creek, Arnold Slough, and Saar Creek flow into the Sumas River, and the Sumas River drains into the Fraser River. Most of the year, the Sumas River flows by gravity through floodboxes at the Barrowtown Pump Station. During the Fraser River freshet, the Sumas River flow can be pumped using two of the four pumps at the Barrowtown Pump Station. All four pumps can be used to drain the Sumas Lake bottom area.

In addition, the Nooksack River, located in Washington State in the United States of America, can contribute to the Sumas River flood hazard. During large floods, the Nooksack River may overflow its banks, with a portion of the floodwater flowing across the Washington State – British Columbia border and into the Sumas River. However, it is understood that the Sumas Dike was not originally designed for, and is not currently designed for, the additional hazard from the Nooksack River overflow scenario.

It is understood that asbestos-laden sediment is a concern in the Sumas River due to upstream sources (Swift Creek landslide) in the United States of America (BC Ministry of Water, Land, and Air Protection, 2004). This concern can complicate vegetation management and sediment removal.

The Sumas Dike was originally designed and constructed to agricultural standards in 1919-1923, with reduced requirements compared to standard dikes (Klohn Leonoff, 1989). The most recent upgrade for the Sumas Dike was completed in 1983-1984 (Crippen Consultants, 1988). The 2015 and 2016 dike inspection reports noted the dike is in excellent shape, with regular vegetation maintenance being completed, and no items requiring immediate attention (City of Abbotsford, 2016) (City of Abbotsford, 2015).

Though the Sumas Dike protects the Sumas Lake Bottom area from flooding, it exacerbates flooding in Sumas Prairie West. Raising the Sumas Dike would further protect the Sumas Lake bottom, but would cause increased flooding to the west (UMA Engineering Ltd., 2003). Previous reports and studies have analyzed this intertwined system and proposed a variety of options for consideration (Kerr Wood Leidal, 2014) (Kerr Wood Leidal, 2017) (UMA Engineering, 2004). Summarized below are the options developed as part of the 2004 Sumas Prairie Flood Hazard Investigation (UMA Engineering, 2004):

- construct a floodway for the Marshall sump to convey water to Barrowtown more quickly;
- build a new large pump station at Barrowtown to pump the Sumas River \$80 million capital, \$0.5 million O&M;
- deepen and enlarge the Sumas River \$51 million capital, \$0.6 million O&M this cost estimate does not include an allowance for removal and disposal of the asbestos laden sediment in the Sumas River;
- construct separate Sumas and Vedder River channels to the Fraser River \$68 million capital, \$0.1 million O&M; and
- construct a tunnel through Sumas Mountain from Barrowtown to the Fraser River \$155 million capital, \$0.1 million O&M.

Glen Valley Dike

The Glen Valley Diking District is a private dike authority that is located in both the Township of Langley and the City of Abbotsford along the Fraser River floodplain. The Glen Valley Diking works are not included in the long-term dike upgrade assessment.

The Glen Valley works consist of two wing-dikes and a pump station on Nathan Creek. The west-wing dike is located in the Township of Langley and the east wing-dike is located in the City of Abbotsford. The wing-dikes act in conjunction with a river-side CN rail embankment to protect the primarily agricultural floodplain area. It is important to note that the rail embankment was not designed as a dike, and it is understood that CN does not view it as providing flood protection. CN has previously indicated that it does not intend to upgrade the embankment for flood protection purposes.

7.2 Survey of Nearby Jurisdictions

Phone and email surveys/interviews were completed with nearby jurisdictions on the Fraser River to improve understanding of how other municipalities and regional districts are planning for their dike systems. This included the City of Surrey, City of Chilliwack, District of Kent, and District of Mission. Table 7-1 summarizes the jurisdictions contacted and responses to the set survey questions. The survey questions focused on:

- awareness of flood levels considering sea level rise and climate change;
- current and future dike crest design elevations;
- seismic design guidelines and upgrades;
- funding plans for long-term dike upgrades; and
- agricultural standard dikes.

All jurisdictions were familiar with the most recent studies and modelled flood levels considering sea level rise and climate change, though none of the regions have adopted new dike crest elevations considering sea level rise or climate change. Generally, participants are looking to guidance from the province and the Fraser Basin Council regarding design requirements for future upgrades. None of the jurisdictions surveyed currently have plans to upgrade dikes to meet seismic requirements. Larger jurisdictions (City of Chilliwack and City of Surrey) have funding plans in place for long-term dike upgrades, assuming that two-thirds of the cost will be funded by the provincial and federal governments.

Table 7-1: Nearby Jurisdictions Survey Summary

Question	City of Chilliwack	City of Surrey	District of Kent
Contact	Frank Van Nynatten <u>vanny@chilliwack.com</u> 604-793-2720	Carrie Baron <u>CABaron@surrey.ca</u> 604-591-4278	Matthew Connolly mconnolly@district.Kent.bc.ca 604-796-2235
Are you aware of the most recent flood levels developed for the Fraser River considering sea level rise and climate change ¹ ?	Yes	Yes	Yes
What is the current design event for your Fraser River dike system?	The 1894 Flood of Record, designated as the 500-year event. Flood profile from the MFLNRO March 2014 Report ²	The 1894 Flood of Record, designated as the 500-year event. Surrey is still working to achieve this level in some locations. Flood profile from the 2008 MOE & NHC Report ³	The District has not specified a design flood level. The dikes do not meet the provincially designated 1894 Flood of Record (500-year event), as there is not sufficient freeboard o below flood level. It is a challenge to meet current flood levels & obtain property neede for ROW with small region & tax base.
Have you formally adopted a new design event for your dike system considering sea level rise and/or climate change for future upgrades?	No, Chilliwack is coordinating with the Fraser Basin Council to consider the implications & determine what the new design will be.	No, MFLNRO has not set out which condition in the 2014 report ¹ governs, & more detailed works & regional study are underway at Fraser Basin Council. Future upgrades & higher elevations are considered when doing the designs &/or acquiring the ROWS for recent upgrades.	No.
Are you familiar with the provincial Seismic Design Guidelines for Dikes, & do you have plans to upgrade dikes to meet the standards moving forwards?	Yes. There are no specific plans to upgrade the dikes to meet seismic standards unless other upgrades are being completed.	Surrey has completed geotechnical assessments along the Fraser River, which show the provincial guidelines cannot be met. An exemption has been sought & received from the Inspector of Dikes in the past & is being sought again. New funding for upgrades is not considering seismic upgrades. The FBC is setting up a new committee to revisit the guidelines. There is concern regarding the ability to fund seismic upgrades in significant residential/industrial areas without filling the whole land base (super dike).	Yes. No plans to meet the seismic guidelines at present & expect that that cost would be a la concern for the District.
Do you have a funding plan or diking utility to complete future upgrades to the diking system?	Yes, Chilliwack has an annual dike improvement capital budget to fund 1/3 of the expected cost for upgrades, with the assumption that the federal & provincial governments would each fund 1/3 of the total cost. \$600,000 is the 2017 budget, which rolls over to eventually fund large-scale dike upgrades. The annual improvement budget is reviewed annually & has gone up over the last few years.	At present, Surrey has only included dike upgrade funding in the drainage utility 10-year plan for existing conditions (500-year event), assuming 2/3 of the funding would be from the provincial & federal governments. Surrey's Coastal Flood Adaptation strategy looks at future requirements along the coast. The regional FBC strategy is being looked at to help with funding for future climate change conditions. Surrey has a drainage utility & parcel tax (\$351 for industrial/commercial & \$221 for residential currently) ⁴ .	Grants are applied for dike upgrades when available (Hammersley Pump Station curren being upgraded). The District has a diking account some properties pay into that funds dike activities (O&M & capital), which is not sufficient for large upgrades. Provincial or federal grants are viewed as the only sufficien source of funding to complete large upgrade
Does your region treat agricultural dikes differently than standard dikes?	No, the dikes protect all land uses. Chilliwack was not aware of the historic difference in standards for agricultural & standard dikes.	Many dikes in Surrey are non-standard (Agricultural or other). The province transferred responsibility for the Colebrook diking district to Surrey several years ago with funding to upgrade to current standards & acquire land, with the dikes designated as low-risk & thus without seismic requirements. When upgrading non-standard dikes, the Surrey aims to achieve the current provincial standards when possible.	All dikes in the District of Kent are standard dikes.

Ministry of Forests, Lands, & Natural Resource Operations, March 2014. "Fraser River Design Flood Level Update – Hope to Mission". <u>https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/integrated-flood-hazard-mgm hope_to_mission_final_report.pdf</u>

Northwest Hydraulics Consultants (NHC) for the Ministry of Environment (MOE), March 2008. "Fraser River Hydraulic Model Update – Final Report". <u>https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/integrated-flood-hazard-mgmt/fraser_update_full_report_2008.pdf</u>
 Surrey Drainage Parcel Tax: <u>http://www.surrey.ca/city-services/4690.aspx</u>

CITY OF ABBOTSFORD

Drainage Master Plan Final Report June 2018

	District of Mission
	Matt Dunham <u>mdunham@mission.ca</u> 604-820-3765
	Yes
d ly ar or ed	The Silverdale dike (4 km) is built to an agricultural standard with a current design event of 100 years. The Mission dike is in 2 portions, 1 km to the west that is constructed to a 100 to 200-year event & the remaining 2km to a 50-year event.
	No.
large	Yes. No plans have been made for upgrades, general concern & attention has been related to the design elevation.
i ently Is all t cient des.	There is no funding plan or diking utility to complete future upgrades.
d	The Silverdale dike was constructed to agricultural standards with steeper slopes & narrower crest. The dike was raised in 2007 to a 100-year design event & large sections have been filled on both sides by local farm operators & a logging contractor. Most of the work was monitored by FLNRO & Mission, with the belief that they are providing further stabilization.
t/fraser_i	river design flood level update-

7.3 Dike Upgrade Methodology

Field Review

A one-day field review of the dike systems was completed by KWL and exp with the City on October 25, 2017. The goal of the field review was to generally review the alignment and condition of the dike, major utilities, confirm the findings in dike inspection reports, and to discuss upgrade methodology. The dikes are in good condition and site observations generally confirmed the results of the most recent dike inspections (2015 and 2016).

Flood Profiles

Table 7-2 presents the proposed criteria for long-term upgrading that will be used in developing the cost estimates. For the purpose of this cost assessment, the dikes are assumed to be upgraded to meet the below flood profiles with 0.6 m freeboard.

Table 7-2: Proposed Long-term Dike Upgrading Criteria

Criteria	Matsqui Dike	Vedder Dike	Sumas Dike
Design Flood Scenario ¹	•	n period flood ² hange impact to flow	 200-year return period flood³ Nooksack River overflow into Sumas River 0.3 m addition to flood profile as an allowance for climate change impacts (discharge, sea level rise)
Seismic Performance	Provinc	ial "high-consequence" d	ike seismic performance criteria ⁴

Notes:

- 1. The flood profiles selected are used to assess the approximate cost of long-term dike upgrades. Selection of a design flood profile for each dike should be assessed in the future for conceptual design and analysis.
- Selected from scenarios provided in: Ministry of Forests, Lands, and Natural Resource Operations, 2014. Simulating the Effects of Sea Level Rise and Climate Change on Fraser River Flood Scenarios". The 500-year return period flood has an annual exceedance probability of 0.2%.
- 3. An estimate of the 200-year return period flood, with Nooksack River overflow, is provided in: UMA, 2003. "Sumas Prairie Flood Hazard Investigation Interim Report". The 2003 study did not analyze climate change impacts including discharge changes and downstream sea level rise impacts to the flood profile. The flood profile was increased by 0.3 m as an allowance for climate change.
- 4. Presented in: Golder Associates, 2014. "Seismic Design Guidelines for Dike (2nd Edition)". Prepared for the Ministry of Forests, Lands, and Natural Resource Operations.

Sumas Dike and the Nooksack River Overflow Hazard

The long-term dike upgrading cost estimate for the Sumas Dike has been prepared based on the assumption that the future upgrades will also address the Nooksack River overflow hazard.

The cost of upgrading the Sumas Dike without addressing the Nooksack River overflow hazard has not been addressed in detail.

It is understood that the breakdown between costs for upgrading with and without considering the Nooksack River overflow hazard would be useful for the City in planning for securing funding future upgrades.

In lieu of a more detailed analysis of the cost breakdown, the points below can be used to inform the City.

• In general, the existing Sumas Dike appears to have sufficient freeboard above the existing 200year return period flood profile without considering climate change impacts.

- With a 0.3 m allowance for climate change impacts (but without the Nooksack River overflow hazard), the existing Sumas Dike would require minor raising (up to 0.3 m) to have sufficient freeboard.
- Long-term upgrading to account for the Nooksack River and climate change impacts would generally require a dike raise of up to about 1 m.
- Dike raising is a general indicator of upgrading costs, and as such, the cost of upgrading the Sumas Dike without considering the Nooksack River overflow hazard can be approximated to be on the order of one-third of the cost of upgrading with considering the Nooksack River overflow hazard.
- Climate change impacts for the Sumas River and Nooksack River have not been studied, and a 0.3 m addition to flood profiles may not be sufficient. An updated study of the Sumas River flood hazard which considers climate change impacts to both the Sumas River and Nooksack River would better inform the costs of future upgrading.

Dike Upgrade Assumptions

Table 7-3 presents the assumptions for dike upgrading used in developing the cost estimates. Assessment of the existing condition and selection of design criteria would be required for dike upgrade design.

ltem	Assumption
Existing condition	The existing dike fill is in good condition and work is not required to repair the dike core prior to raising.
Crest height	The crest height will be the selected flood profile plus 0.6 m freeboard.
Crest width ^a	The minimum crest width will be 4 m.
Crest surfacing	The crest will be maintained in accordance with existing surfacing material (primarily gravel with some paved sections where the dike is a road).
Side slopes ^a	The landside slopes will be 3H:1V. The waterside slopes will be 2H:1V where erosion protection is installed or 3H:1V where erosion protection is not installed.
Seepage mitigation	If the dike crest elevation is more than 4 m greater than the landside toe elevation, a gravel toe berm will be constructed to reduce seepage. In areas with known seepage within 50 m of the dike, the land will be locally filled for an additional 1 m height.
Access ^a	Access to the dike will be provided every 2 km. Turnouts will be provided at intervals of 300 to 500 m on the landside of the dike, provided there are no access ramps within this interval. Turnouts will have an extra 6 m width and extend for 20 m with 15 m taper sections on both sides.
Road crossings	Road crossings of the dike will be raised and paved, with the road grade no greater than 5%. This includes the Highway 1 and Sumas dike intersection, where the Highway is below the future dike crest elevation approximately 0.3 m ^b .
Rail crossings	Rail crossings of the dike below the design elevation will have manual flood gates installed.
Alignment	The dike will retain the existing alignment, with the exception of the section along the WWTP where the secondary setback dike alignment is proposed to become the primary dike.
Drainage	All drainage ditches will be located a minimum of 7.5 m from the toe; ditches will be relocated where required.

Table 7-3: Dike Upgrade Assumptions

Item	Assumption
Utilities	Utilities located in the dike footprint will be relocated or raised.
Habitat compensation	Habitat compensation will be required to offset dike upgrading impacts. Compensation will be accounted for as a percentage of the construction cost.
Bank protection	River banks will be protected by riprap if the dike is within 10 m of the top of bank (Fraser River, Vedder Canal, Sumas River only). Along the Matsqui dike where erosion arcs have formed (station 9+300 to 11+600), the erosion arcs will be addressed in accordance with current design and cost estimates (Northwest Hydraulic Consultants, 2015).
Seismic ^{c, d}	The dikes will be upgraded to meet the current provincial seismic dike design guidelines. Upgrades will include 10 m wide strips of densification on either side of the dike extending 10 to 15 m below the existing ground.
Land acquisition	Land will be purchased at market value to ensure that the dike footprint plus 5 m on either side is controlled by the City to allow for maintenance, access, and potential future upgrades.
Pump stations	Pump station upgrades will include replacement of the entire pump station (structural, mechanical, electrical, and instrumentation) based on the 2008 pump station replacement study ^e by Earthtec-AECOM. The Barrowtown pump station is included in the Vedder dike estimate. Pump station costs have been scaled to 2017 dollars using an inflation price index. The costs in the Earthtec-AECOM assessment do not include a premium for fish-friendly pumps and facilities.
b) Highway elevatic) Seismic Design	d Construction Guide – Best Management Practices for British Columbia, 2003. on from UMA, 2003. "Sumas Prairie Flood Hazard Investigation Interim Report". Guidelines for Dikes, 2 nd edition. Ministry of Forests and Natural Resource Operations, 2014. could include alternative options such as stone column drains where space is limited.

e) Earthtec-AECOM, 2008. The City of Abbotsford: Drainage Pump Station PSAB 3150 Study.

7.4 Dike Upgrading Cost Estimate

Dike Condition Summary

Record drawings, design reports, and previous assessments were reviewed to assess the existing dike geometry, crest elevation, erosion protection, and other key features. The dikes were divided into reaches based on dike characteristics and major infrastructure crossings. A summary of key dike characteristics by reach is shown in Table 7-4.

Table 7.	4: Sum	mary of	Abbotsfo	ord Dike	Conditio	ns		A 10 10 10 10										
		Length (r	n) ^a	Crest Width ^a	Cre	st Elevatio	on ^a (m)	Approx. Flood Leve Freeboa	I - Without	Raise Req'd for 0.6 m FB	Slope	s (H:1V)		Erosion / Setback				
Reach	Start Sta.	End Sta.	Length	Width (m)	Up- stream	Down- stream	Low Point		Down- stream	Avg. (m)	Land	Water	River Setback (m)	History	Erosion Protection ^c	Pump Stations / Floodboxes ^a	Seepage ^d	Additional Info
Matsqu	i Dike ·	- Last U	pgrade 2	2007. 1+	-000 to 1	2+544 (1	1.544 km)											
Reach 1	1000	2040	1040	3.6	9.23	9.187	7.9 at 1+550 to 1+590	9.64	9.64	1.03	2.8	2.5	30-500 avg. 180	No history noted	River riprap	McClennen Creek Pump Station at 1+820		
Reach 2	2040	2910	870	3.6	9.187	9.29		9.61	9.61	0.97	2.7	2.5	15-40 avg. 20	No history noted	Riprap at WWTP		History of seepage	
Reach 3	2910	5000	2090	3.6	9.29	9.402	9.1 in some locations at JAMES WWTP	9.86	9.61	0.99	2.8	2.5	10-170	No history noted	River riprap	Matsqui Slough Pump Station at 3+400	History of seepage	Lock block wall primary dike and secondary dike (both 9.1 to 9.3 m elevation) at James Bay WWTP to Masqui Slough Pump Station
Reach 4	5000	6000	1000	3.6	9.402	9.718		9.84	10.14	1.03	2.7	2.5	20-100 avg. 50	No history noted	River riprap	Dejong Pump Station at 5+820	History of seepage & boils	Mission Bridge and CN Rail Bridge
Reach 5	6000	7230	1230	3.6	9.718	9.83		10.22	10.15	1.01	2.8	2.5	20-100 avg. 40	No history noted	River riprap	Vanderloo Pump Station at 6+510	History of seepage & boils	
Reach 6	7230	9870	2640	3.6	9.83	10.03	9.2 at 5+540	10.69	10.27	1.15	3	2.5	100-430 avg: 150	Erosion arcs A, B, and C West of Beharrel Rd	River riprap		History of seepage & boils	
Reach 7	9870	12544	2674	3.6	10.03	9.936	9.4 for 40 m	10.93	10.72	1.44	3	2.5	30-250 avg: 70	Erosion arc E (10+080) repaired 2014. Erosion arc D/G (11+200). Erosion arc F (10+960) repaired 2016, expanded downstream.	River riprap		History of seepage	
Sumas	Dike -	Last Up	ograde 1	985. Soi	uth porti	ion 0+10	0 to 7+460	and North	Section 0	+100 to 9	+484 (16.744 I	(m total)	•	•	·		
Reach 1	100	3980	3880	6.6	7.08	7.26	6.3 at 2+830 to 2+860	7.53	7.51	0.95	2-2.5	2	<10m, often no setback	No history noted	Little to none	2 CMPs with flapgates at 2+840 and 2+400		Along Intercepting Canal. Includes 0.3 m climate change allowance for flood level.
Reach 2	3980	6100	2120	3.6	7.26	7.13		7.51	7.24	0.78	2-2.5	2	<10m, often no setback	No history noted	Little to none	Pipe with flapgate at 4+620		Along Intercepting Canal and Spree Creek. Includes 0.3 m climate change allowance for flood level.
Reach 3	6100	7460	1360	3.6	7.13	7.272		7.24	7.13	0.58	2-2.5	2	<10m, often no setback	No history noted	Little to none	900 mm CMP with screw gate at 7+090		Includes 0.3 m climate change allowance for flood level.
Reach 4	100	2660	2560	3.6	7.062	6.998		7.13	6.87	0.57	2-2.5	2	<10m often no	No history noted	Little to none			Includes 0.3 m climate change allowance for flood level.
Reach 5	2660	5540	2880	3.6	6.998	6.76		6.87	6.83	0.57	2-2.5	2	<10m	No history noted	Little to none	600 mm CMP with screw gate at 2+690		Includes 0.3 m climate change allowance for flood level.
Reach 6	5540	9210	3670	3.6-10	6.76	6.458		6.83	6.78	0.80	2-2.5	2	<10m, often no setback	No history noted	Little to none	900 mm CSP with screw gate at 6+800		Dike is North Parallel Road from 9+210 to 8+220 (10m wide). Includes 0.3 m climate change allowance for flood level.
Reach 7	9210	9484	274	6.6	6.458	10.95	Barrowtown Dam	6.76	6.76	Reach 3 Vedder			No setback, dam	No history noted	Little to none	Barrowtown Dam and Pump Station		Includes 0.3 m climate change allowance for flood level.

Table 7-4: Summary of Abbotsford Dike Conditions

O:\0500-0599\510-152\400-Work\DykeAssessment\20180130_DikeSummary

	L	Length (r	n) ^a	Crest Width ^a	Cre	st Elevatio	on ^a (m)	Approx. Flood Leve Freeboa	I - Without	Raise Req'd for 0.6 m FB	q'd for Slopes (H:1V)		Req'd for Slopes (H		d for Slopes (H:1V)		Erosion / Setback		Erosion / Setback		Erosion / Setback		bes (H:1V) Erosion / Setback		Pump Stations /	Pump Stations /		
Reach	Start Sta.	End Sta.	Length	Width (m)	Up- stream	Down- stream	Low Point	Up-stream	Down- stream	Avg. (m)	Land	Water	River Setback (m)	History	Erosion Protection ^c	Floodboxes ^a	Seepage ^a	Additional Info										
Vedder	Dike -	Last Up	ograde 2	007. 3+7	40 to 8+	484 (4.74	44 km)																					
Reach 1	3750	6370	2620	3.6-4.5	10.6	11.035		11.78	11.76	1.55	3-2.5	2.5	2200-4500 (Fraser) None on canal	No history noted	None													
Reach 2	6370	8110	1740	3.6-4.8	10.95	10.6		11.74	11.67	1.53	3-2.5	2.5	on canal	No history noted	None		Geotech. investigation recommended seepage berm											
Reach 3	8110	8484	374	6.6	10.726	10.95		11.68	11.68	1.44			2800 (Fraser) None on canal	No history noted	None	Barrowtown Pump Station and Dam		300 mm curb at dam for current crest elevation										

a. Dike Record Drawings (Matsqui and Vedder 2007, Sumas 1985). Sumas pipes not confirmed in the field.

b. Simulating Effects of sea level rise and climate change on fraser flood scenarios (May 2014)

c. Lower Mainland Dike Assessment (NHC, 2015)

d. City of Abbotsford Seepage Maps and Geotechnical Investigation and Analysis: Emergency Dike Raising Vedder Canal and Sumas River (Golder, 2008).

Unit Costs

Unit costs for upgrade components were developed based on previous dike construction projects in the Lower Mainland region. The table below summarizes the unit costs and their basis.

ltem	Unit Rate	Assumption / Basis					
Dike Fill	\$1500 per m raise per lineal m	Includes construction cost of dike fill, topsoil surfacing, re-seeding, and granular dike surfacing.					
Buried Utility Pipe	\$400 each	Includes removal and replacement of utilities within the dike corridor.					
Utility Pole Replacement	\$10,000 each	Includes replacement of existing utility pole.					
Water Main River Crossings (through dike)	\$200,000 each	Includes allowance for potential replacement of a portion of the water main or the construction of a non-standard dike to reduce impact to existing water main (e.g. lightweight fill, concrete cap, etc.).					
Seepage Mitigation – Toe Berm	\$70/m ³	Includes supply, placement, and compaction of a landside gravel seepage toe berm in locations where the dike height is greater than 4 m.					
Seepage Mitigation – Landside Filling	\$40/m ³	Includes placement and compaction of dike fill type material in low-lying areas where seepage has been observed based on City of Abbotsford records.					
Paved Access Roads	\$100/m ²	Includes supply, placement, and compaction of granular bases and asphalt paving.					
Rail Crossings	\$200,000 each	Includes the cost of a manual floodgate.					
Turnouts	\$60/m³	Includes placement and compaction of dike fill for landside dike turnouts as per provincial design guidelines.					
Drainage	Varies	Drainage costs include replacement of small floodboxes and culverts on the Sumas Dike.					
Bank Protection	\$70/m ³	Includes the supply and placement of riprap bank protection and granular or fabric filter.					
Seismic	\$15/m ³ densified soil	Includes densification of the ground adjacent to the dik for 10 metres on either side. In areas where 10 m is n available, alternatives such as stone column drains could be considered (not included in cost estimate).					
Land Acquisition	\$2/m ²	Based on assessed land value July 1, 2016 for a sampling of rural properties in Abbotsford.					
Pump Stations	Varies	Includes full replacement of pump station (structural, mechanical, electrical, and instrumentation) with a 20% allowance for additional unaccounted items (decommissioning, fish-friendly pump station, water control).					

Table 7-5	Unit	Costs	for	Dike	Upgrading
	Onit	00313	101	DINC	opgrading

Class D Cost Estimates

The cost estimates provide for long term upgrading of each of the City's dikes are high-level lump sum estimates in 2018 dollars. These costs are considered indicative for planning purposes only and planning, conceptual design, and investigation would be required to more accurately determine costs.

Table 7-6 summarizes the dike upgrade costs for each dike without seismic performance improvements. Table 7-7 summarizes the dike upgrade costs including seismic performance improvements. Additional details are provided in Tables F1 to F3 on Appendix F.

Estimates have been prepared with little or no site information and as such indicate the approximate magnitude of the cost of the capital tasks, for project planning purposes only. The estimate has been derived from unit costs for similar projects.

Dike	Geometric ^a	Bank Protection ^b	Land Acquisition	Pump Stations	Totals			
Matsqui Dike	\$31,860,000	\$18,267,000	\$29,000	\$11,387,000	\$61,543,000			
Vedder Dike	\$10,855,000	\$2,466,000	N/A	\$27,352,000	\$40,673,000			
Sumas Dike ^c	\$27,416,000	\$8,512,000	\$299,000	N/A	\$36,227,000			
Subtotal	\$70,131,000	\$29,245,000	\$328,000	\$38,739,000	\$138,443,000			
Contingency (50%)	\$35,065,500	\$14,622,500	\$164,000	\$19,369,500	\$69,221,500			
Total Construction	\$105,196,500	\$43,867,500	\$492,000	\$58,108,500	\$207,664,500			
Professional Service	es (10% of constructi	on)			\$20,766,000			
TOTAL (ROUNDED) \$228,000,000								
a) Includes crest eleva b) Includes bank prote	a) Includes crest elevation, surfacing, width, side slopes, access, seepage mitigation, crossings, drainage, and utilities. b) Includes bank protection as well as habitat mitigation and compensation allowance for bank protection and geometric dike							

Table 7-6: Class D Cost Estimate Summary Excluding Seismic Performance Improvements

components.

c) Cost estimate assumes long-term upgrades will also address the Nooksack River overflow hazard. A detailed review of the cost breakdown between upgrading the Sumas Dike with and without addressing the Nooksack River overflow hazard has not been conducted. However, based on estimated dike raising heights, the cost of upgrading the Sumas Dike without addressing the Nooksack River overflow hazard is estimated as approximately 1/3 of the cost of upgrading the dike with addressing the Nooksack River overflow hazard.

Table 7-7: Class D Cost Estimate Summary Including Seismic Performance Improvements

Dike	Base Cost Excluding Seismic ^a	Seismic	Totals
Matsqui Dike	\$61,543,000	\$33,303,000	\$94,846,000
Vedder Dike	\$40,673,000	\$17,175,000	\$57,848,000
Sumas Dike ^b	\$36,227,000	\$62,213,000	\$98,440,000
Subtotal	\$138,443,000	\$112,691,000	\$251,134,000
Contingency (50%)	\$69,221,500	\$56,345,500	\$125,567,000
Total Construction	\$207,664,500	\$169,036,500	\$376,701,000
Professional Servic	es (10% of construction)		\$37,670,000
		TOTAL (ROUNDED)	\$414,000,000

Refer to Table 7-6. a)

Cost estimate assumes long-term upgrades will also address the Nooksack River overflow hazard. A detailed review of the cost b) breakdown between upgrading the Sumas Dike with and without addressing the Nooksack River overflow hazard has not been conducted. However, based on estimated dike raising heights, the cost of upgrading the Sumas Dike without addressing the Nooksack River overflow hazard is estimated as approximately 1/3 of the cost of upgrading the dike with addressing the Nooksack River overflow hazard.

7.5 Phasing

The City has suggested the phasing approach outlined below to incorporate the dike upgrading cost into the drainage master plan.

- Medium-term (5-15 year): Full seismic performance upgrading and partial dike raising. The partial raise is estimated by a consistent 0.5 m raise.
- Long-term (16-32 year): complete the rest of the dike raising and other construction components including utilities, seepage, access and roads, turnouts, rail crossings, drainage, bank protection, land acquisition and pump stations.

This phasing approach will allow the City to roughly distribute the estimated dike upgrading cost for long-term planning and budgeting purposes. On a practical basis, it is not likely that the dike upgrading program will be implemented exactly in this way. Some items included in the long-term cost may need to be at least partially implemented earlier (i.e. land acquisition and bank protection).

Medium-term Implementation Indicative Cost

A simplified cost estimating approach was used to estimate the cost of the medium-term partial dike raising. This approach only includes the geometric portion of the dike raising (i.e. the earthwork needed to raise the dike crest). As a crude approximation, it is assumed that the unit cost would be two-thirds of the total unit cost for the full dike raising.

This approach does not include other construction components including utilities, seepage, access and roads, turnouts, rail crossings, drainage, bank protection, land acquisition and pump stations. Each of these would be long-term items, and would require further consideration on a reach-by-reach basis. Whereas the other cost estimates in this technical memorandum are indicated as "Class D", the phased cost estimate provided herein is unclassified (much less certain than a Class D cost estimate). This cost estimate is in 2018 dollars.

Partial Dike Raising ^a (0.5 m)	Seismic	Totals
\$11,500,000	\$33,303,000	\$44,803,000
\$4,700,000	\$17,175,000	\$21,875,000
\$16,700,000	\$62,213,000	\$78,913,000
\$32,900,000	\$112,691,000	\$145,591,000
		\$7,280,000
		\$72,796,000
	Subtotal	\$225,667,000
ction)		\$22,567,000
	TOTAL (ROUNDED)	\$248,000,000
	\$11,500,000 \$4,700,000 \$16,700,000 \$32,900,000	(0.5 m) Construct \$11,500,000 \$33,303,000 \$4,700,000 \$17,175,000 \$16,700,000 \$62,213,000 \$32,900,000 \$112,691,000 Subtotal ction)

Table 7-8: Indicative Cost Estimate for Medium-term Dike Upgrading

a) Partial dike raising represented by a 0.5 m raise. Only includes the geometric portion of the dike raising (i.e. the earthwork needed to raise the dike crest by 0.5 m). Does not include other construction components including utilities, seepage, access and roads, turnouts, rail crossings, drainage, bank protection, land acquisition and pump stations.

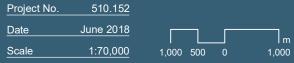
Long-term Implementation Indicative Cost

The long-term implementation cost is estimated to be \$166,000,000 by subtracting the medium-term implementation cost presented in Table 7-8 from the total upgrading cost estimate presented in Table 7-7.

Limitations

The cost estimates provide an indication of anticipated long-term dike upgrading costs to meet the stated dike standards. The estimates reflect typical dike upgrading work based on general principles, and are not based on any site-specific design work. Design concepts were not investigated thoroughly for feasibility and it is possible that alternative concepts may be preferred. Actual costs for any given area or component may vary significantly based on the actual concept that is selected, and the design that is undertaken. Some component cost items are based on previous work by others, as noted, and are subject to the pertinent limitations of the source (no work has been done to verify such costs).

As noted herein, the most recent available Sumas Dike flood profiles do not consider how climate change may impact the Sumas River and the Nooksack River. An updated flood hazard study would better inform the potential costs of future upgrading, including the cost breakdown with and without considering the Nooksack River overflow hazard.


The City should exercise caution in using these indicative cost estimates for program planning. In particular, the City should recognize that approach taken to distribute costs between medium-term and long-term is very simplistic, and not likely fully representative of how the dike upgrading work will actually occur. The cost estimating approach for seismic performance improvement is also simplistic, and does not reflect actual site conditions.

Drainage Master Plan - Long-term Dike Upgrading Cost Assessment

Long-term Dike Upgrading Cost Assessment Study Area

KERR WOOD LEIDAL consulting engineers Leggend Municipal Boundary Yeump Station Matsqui Dike Sumas Dike Vedder Dike

8. Stormwater Management Policy and Criteria

Over the years, the City has developed stormwater management policies on a City-wide scale through bylaws and a watershed scale through ISMPs. This section summarizes the City's existing policy and criteria related to stormwater management and compares them with those from other municipalities. To guide future development, recommendations were made to update criteria and work toward consistency across watersheds and City-wide depending on site-specific issues, incorporate climate change considerations, and address stakeholder concerns.

8.1 City's Existing Policy and Criteria

City-wide Stormwater Management Criteria

Stormwater management criteria within the City is summarized in bylaws and supplemented with DFO and ARDSA guidelines. The major sources are listed below with criteria summarized in Table 8-1:

City Bylaws:

- City of Abbotsford Consolidated Development Bylaw No. 2070-2011
- Stormwater Source Control Bylaw for CICP Industrial lands, No. 2045-2011
- City of Abbotsford Erosion & Sediment Control Bylaw, 2010
- City of Abbotsford Streamside Protection Bylaw, Bylaw No.1465-2005

Guidelines:

- Rainwater Management Measures for Clayburn Watershed Draft, 2013
- DFO: Urban Stormwater Guidelines and Best Management Practices for Protection of Fish and Fish Habitat, Draft Discussion Document 2001. http://www.dfo-mpo.gc.ca/Library/277967.pdf
- ARDSA: Agriculture and Rural Development Subsidiary Agreement

Application	Criteria/Methodology					
Flood and Erosion Pro	tection					
Minor Drainage System	10-year return period design event. ¹					
Major Drainage System	100-year return period design event. ¹					
Agricultural Lowland Flooding – ARDSA ²	Itural Lowland Limit flooding to 5 days during a 10-year 5-day winter storm & to 2 days					
Environmental Protect	ion					
Volume Reduction Source Controls	On-site rainfall capture (runoff volume reduction) for 6-month 24-hour storm (72% of the 2-year 24-hour storm). ^{3, 4, 5}					
Water Quality Treatment	Remove 80% of Total Suspended Solid from 6-month 24-hour storm (72% of the 2-year 24-hour storm). ³ Limit construction discharge water quality to < 25 NTU turbidity or total suspended solids of 25 mg/L at all times except in the 24-hour period following significant rainfall events (≥25 mm/day) at which time the turbidity can be up to 100 NTU. ⁶ (or 75 mg/L ³)					
Rate Control Detention / Diversion	Detain 10-year (100-year upstream of Clayburn Village) peak flows to 5 L/s/ha. ¹ Control post-development flows in creeks to pre-development levels for 6-month, 2-year and 5-year 24-hour event. ³					
 ARDSA = Agriculture and DFO Urban Stormwater (Stormwater Source Cont 	opment Bylaw No. 2070-2011. d Rural Development Subsidiary Agreement. Guidelines and BMPs for the Protection of Fish and Fish Habitat, 2001. rol Bylaw for CICP Industrial lands, No. 2045-2011 Measures for Clayburn Watershed – Draft 2013					

5. 6. Rainwater Management Measures for Clayburn Watershed - Draft, 2013

City of Abbotsford Erosion & Sediment Control Bylaw, 2010

The City Streamside Protection Bylaw is consistent with the Provincial Riparian Areas Regulation to protect fish habitat from adverse effects of land development (see Table 8-2).

Watercourse	Existing or potential ² streamside vegetation	Streamside Protection and Enhancement Area width ¹			
Туре	conditions	Fish Bearing	Non Fi	sh Bearing	
	conditions	FISH Dearning	Permanent	Non-Permanent	
Wetlands and all other watercourses	Category 1. Continuous areas ≥ 30 m or discontinuous but occasionally > 30 m to 50 m	At least 3	At least 15 m		
	Category 2. Narrow but continuous areas = 15 m, or discontinuous but occasionally > 15 m to 30 m	Greater of: -existing width, or	15 m		
	Category 3. Very narrow but continuous areas up to 5 m, or discontinuous but occasionally > 5 m to 15 m	-potential width, or -15 m	At least 5 m & up to 1 5m		

Table 8-2: Existing Streamside Protection and Enhancement Area Widths

Watercourse	Existing or potential ²	Streamside Protection and Enhancement Area width ¹			
Туре	streamside vegetation conditions	Fich Beering	Non Fish Bearing		
	conditions	Fish Bearing	Permanent	Non-Permanent	
Ravines >60 m in width ³	N/A		10 m		
Ditches	N/A	2 times channel width ⁴ (max. 10 m, min 5 m)	vidth ⁴ (max. 10 m, $2 m$		

¹Measured from the Top of Ditch Bank for Ditches and from the Top of Bank for Streams and Wetlands. ²Potential vegetation is considered to exist if there is a reasonable ability for regeneration either naturally or with assistance through enhancement, and is considered to not exist on part of an area covered by a permanent structure. ³Measured from Left Top of Bank to Right Top of Bank, excluding the stream channel.

⁴Channel Width is determined by the width of the ditch at the midpoint between the ditch invert and the top of the ditch bank.

Watershed-Scale Criteria

In addition to the City-wide design criteria and policies, the City has developed and implemented ISMPs on a watershed basis, which provides watershed specific guidelines. The Clayburn Creek ISMP is the only one adopted by the City to date.

Table 8-3: Summary of Policies Recommendations from ISMPs

Clayburn Creek ISMP

- Volume Reduction/LID: Add volume reduction target (6-month 24-hour event)
- Develop green road standards for stormwater treatment & volume reduction
- Develop examples & standards for Stormwater Source Controls to aid with implementation
- Enhance Tree Protection Bylaw to require compensation for <20 cm diameter trees.
- Enforce the Streamside Protection Bylaw with no-net-loss variances except for creek crossings
- Enforce the Erosion & Sediment Control Bylaw

Downes Creek ISMP

- Review existing City development standards to ensure compatibility with LID application
- Revise the development standards to require LID measures to achieve rainfall capture targets
- Require annual monitoring & maintenance, with documentation, for "hot-spot" water quality BMP facilities
- Require minimal removal & compaction of surficial soil during construction & development
- Identify & maintain any areas with reasonable infiltration capacity for siting of BMP/LID facilities
- Develop & implement a watershed monitoring & adaptive management
- Amend to require tree removal permits for tree felling within the City, maintain maximum existing/native vegetation during development, including mature trees, & protect high-value "habitat" trees

Marshall Creek ISMP

- Maximizing source controls such as disconnected roof leaders, infiltration facilities and swales, rain gardens, absorbent soil layers, lot terracing, and green roofs to capture the 6-month return period rainfall.
- Constructing regional detention and/or infiltration facilities, and diversions to reduce postdevelopment flows to pre-development levels for the 6-month, 2-year and 5-year events.
- Incorporate references to the ISMP and the summary in the development bylaw.
- Establish riparian setbacks along all watercourses
- Review development application designs to check that they meet the requirements of the plan.
- Inspect during construction to ensure that BMPs/facilities are being constructed as designed.
- Collect Development Cost Charges (DCCs) and construct regional detention/infiltration facilities.
- Enhance riparian areas along the Marshall Creek Mainstem to offset any increases in effective impervious area that have not been addressed with onsite source controls and regional facilities.

8.2 Existing Source Control Bylaw Enforcement Challenges

Development Services have had some developers submit drawings for infrastructure in accordance to the *Stormwater Source Control Bylaw* to meet zoning requirements, but did not construct the measures once zoning was approved and at time of construction.

The Stormwater Source Control Bylaw is a compliance bylaw, but is not enforceable after the zoning without the City going to court. An enforceable bylaw must be included in the City's *"Consolidated Bylaw Notice Enforcement Bylaw, 2007 Bylaw No. 1703 – 2007.* This makes the *Stormwater Source Control Bylaw* a regulatory bylaw allowing the Bylaw Department to enforce it.

8.3 Stormwater Criteria from Other Jurisdictions

Each individual jurisdiction has its own accepted design practices and evolving requirements regarding storm drainage and stormwater management. Five municipalities in the Fraser Valley and Lower Mainland were selected and their drainage criteria and policies are summarized in Table G1 in Appendix G.

The following are key findings of the City's existing policy review and comparison with other local municipalities:

- The City's drainage design criteria, including minor and major system, detention, and agricultural lowland, are generally in agreement with those from other municipalities.
- The City's *Streamside Protection Bylaw* is consistent with the Provincial *Riparian Areas Regulation* to protect fish habitat from adverse effects of land development.
- The City needs to develop an enforceable *City-wide Source Control Bylaw* outlining acceptable measures, and capture targets and volume reduction criteria, with reference to the existing ISMPs as needed. Information from both the Draft *Clayburn Creek Rainwater Management Measures* and *CICP Stormwater Source Control Bylaw* could be used to develop this bylaw.
- Need to continue to develop and adopt ISMPs for major watersheds.

8.4 **Recommendations**

Based on the stormwater policy review, it is recommended that the City:

Stormwater Source Controls

- 1. Develop an enforceable City-wide Stormwater Source Control Bylaw for new development and redevelopment. Combine information from the Clayburn Creek rainwater management Bylaw and the CICP Stormwater Source Control Bylaw (No. 2045-2011) to create this document. This will supplement the provisions of the City's Development Bylaw.
 - a. Include this bylaw within the City's "Consolidated Bylaw Notice Enforcement Bylaw, 2007 Bylaw No. 1703 2007" to ensure it can enforced by the Bylaw Department, and is a regulatory, not a compliance, bylaw.
 - b. Include specific criteria for ISMP watersheds, CICP specific requirements, and for unstudied areas, if needed or adopt consistent criteria throughout the City that will meet or exceed the individual watershed criteria.
 - Add high level information for guidance such as the Infiltration Map, source control prescriptions (e.g. Clayburn ISMP Table and Map), clear capture targets (6-month 24-hour event Volume Reduction), etc.
- 2. Develop Stormwater Source Controls Examples and Standards to aid with education and implementation. Refer to the Clayburn Creek Rainwater Management Measures for the green road standards for stormwater treatment and volume reduction.
- Incorporate O&M procedures (source controls, detention, and BMPs) into the City's regular O&M activities.

Development Bylaw, 2011 (Bylaw No. 2070-2011)

- 1. Under Rainwater Management Principles (Section No. 4, Item 2), add reference to new City-wide Stormwater Source Control Bylaw.
- 2. Add requirement to incorporate climate change into analysis and design. Provide sources for climate change information to be used.
- 3. Require fish friendly design for new drainage infrastructure installation or upgrades (culverts, flood boxes and pump stations).
- 4. Require minimal removal and compaction of surficial soil during construction and development.

Other Bylaws:

- 1. Enforce the *Streamside Protection Bylaw No. 1465-2005* with no-net-loss variances except for creek crossings. Establish riparian setbacks along all watercourses to comply with bylaw.
- 2. Enforce the *Erosion and Sediment Control Bylaw* for protect water quality and minimize sedimentation in waterways.
- 3. Amend the existing *Tree Protection Bylaw (No. 1831-2009)* as necessary to require tree removal permits for tree felling within the City, maintain maximum existing/native vegetation during development, including mature trees, and protect high-value "habitat" trees. Require compensation for loss of "<20 cm diameter trees.
- 4. Add a requirement to the Building Permit process to adhere to the Stormwater Source Control Bylaw.
- 5. Amend the Building Bylaw (No. 2597-2016) to include adding impervious paving as a change on a lot that would trigger the Building Permit process.

9. Regional Facilities Management

9.1 **Detention Facilities**

Database

A detention facility database was complied to summarize all facilities included in recently completed projects as well as larger facilities currently proposed. The database includes physical characteristics of each facility such as storage volume, area, invert elevations, design water levels, high water level, outflow release rate, etc. A total of 108 facilities are summarized in the database (shown in Table H1 in Appendix H. Of those 108 facilities, 11 have not had performance studies completed as of 2017. These 11 are listed at the bottom of the table.

Facilities without Detailed Assessments

To condense the City's large database of ponds that have not had performance studies completed, the following 5 filters where applied to reduce the list down to the 11 flagged in Table H1:

- 1. municipal ownership,
- 2. facility type is pond, tank or infiltration,
- 3. must have a control structure
- 4. have more than 1000 m³ of storage and;
- 5. as of 2017, have not been studied.

To add these unstudied ponds to the database, as-built drawings of each one were obtained from the City and all relevant data was transcribed.

Detention Facility Assessment

All assessments and recommended upgrades completed in past studies have been included in Table H1 in Appendix H.

To assess facilities that have not been assessed as of 2017, a unit release rate was calculated and compared to the 5 l/s/ha maximum allowable release rate set by the City in the Development Bylaw. For the 11 facilities with sufficient information in the unstudied category, the calculated orifice release rate on the as-built drawing was divided by the contributing drainage area to estimate the unit release rate. Of these 11 facilities, the as-built drawings did not include contributing drainage area for 5 facilities. To determine the missing drainage area, existing drainage models were used where available, and where not available, a combination of storm sewer system mapping and contours were used to approximate the drainage area. All facilities assessed in this study are listed under the "Pond Without Detailed Studies" heading in Table H1 in Appendix H.

Community & Regional Facilities

Potential locations to be investigated further for large detention facilities have been identified as shown in Figure 9-1. These facility locations could mitigate downstream erosion and prevent the need for long term downstream storm sewer upgrades. Figure 9-2 and 9-3 provide a closer view of the facilities with the highest potential to reduce flooding. The proposed locations are municipally-owned parkland or open space with no existing detention or infiltration facility within. Once the municipally-owned open spaces were identified, those spaces were prioritized by reported downstream issues and the density land use change exercise that was undertaken in Section 4.

DRAINAGE MASTER PLAN

The areas identified in Figures 9-1 to 9-3 are areas that may be suitable for detention facilities and require detailed examination. The sites shown in these figures were selected by applying the following filters or criteria to the mapping data:

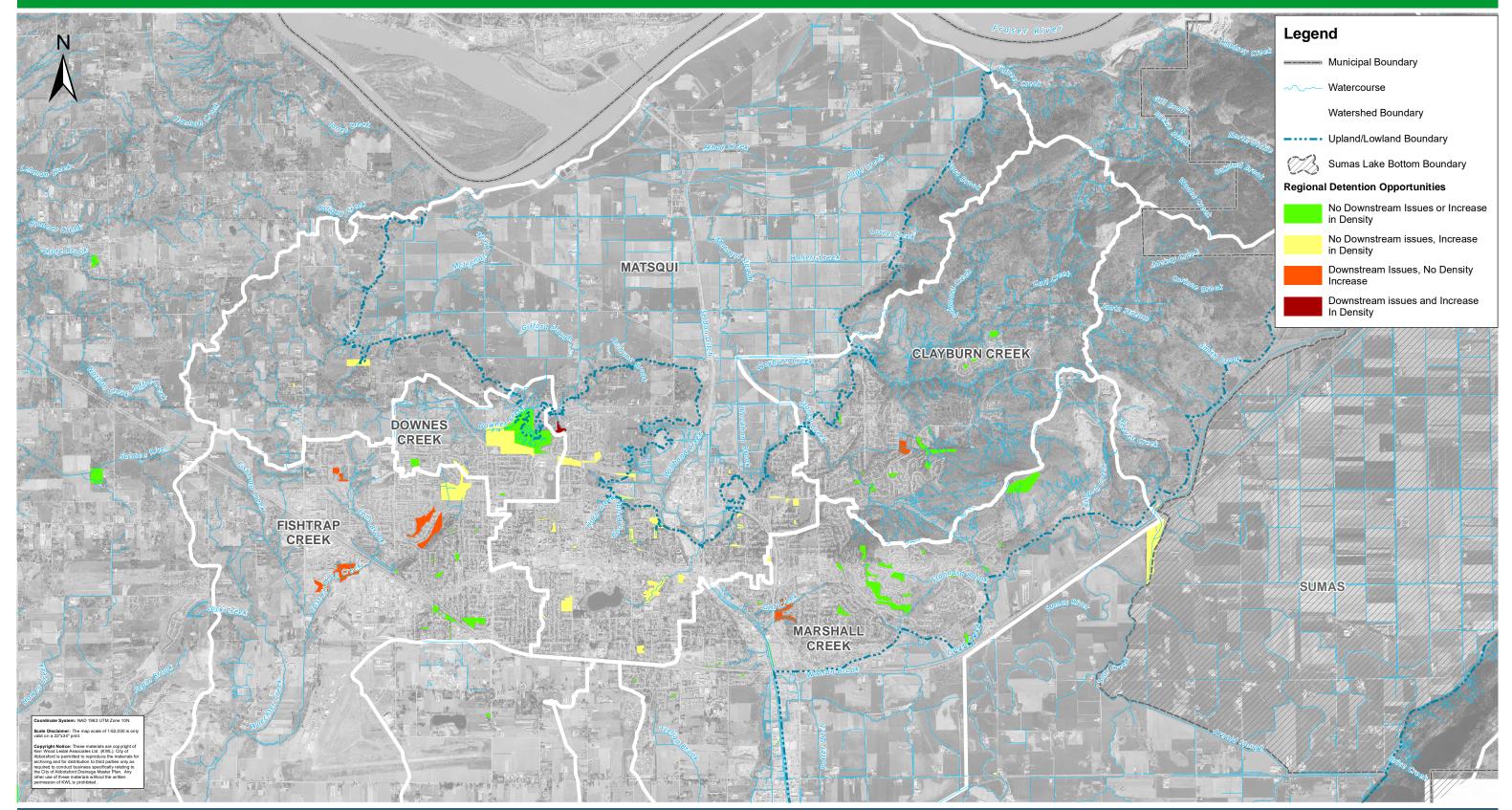
- 1) lot owned by the City
- 2) lot zoned park or open space
- 3) lot larger than 1000 m² (excluding riparian setback areas)
- 4) lot contains slopes flatter than 5%

Parks located adjacent to watercourses are ideal locations for these detention facilities due to their available space and their location between the upslope development and the downslope watercourse.

The areas identified for detention facility consideration, were qualitatively assessed for their potential to reduce existing downstream flooding and the potential to mitigate the impact of runoff from future development. Figures 9-1 to 9-3 show the classification of each location's potential as described in Table 9-1.

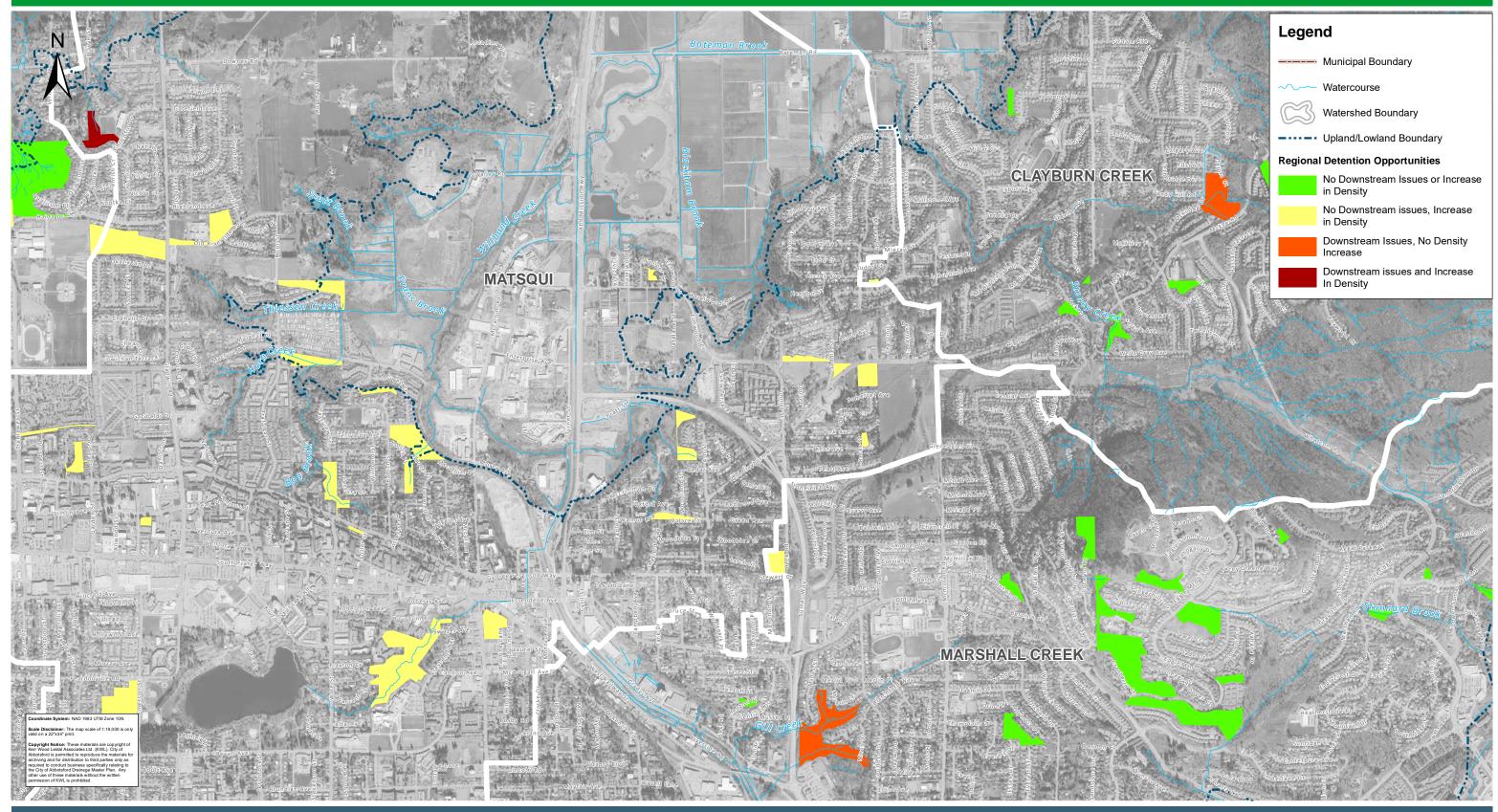
Location Potential	Change in Density	Downstream Issues	Detention Facility Impacts
High	Increase	Reported Downstream Flooding	Detain and reduce peak runoff from existing impervious runoff and increased impervious runoff due to future densification, which would mitigate the potential compounding of local downstream flooding
Medium	No Change	Reported Downstream Flooding	Reduce the contribution to local downstream flooding from existing impervious runoff
Low	Increase	None Reported	Mitigate future downstream flooding potential by reducing peak flow from an expected increase in impervious runoff due to densification
Future Considerations	No Change or Decreasing	None Reported	To be determined at time of development

Table 9-1: Prioritization Criteria of Potential Regional Facility Areas


9.2 Infiltration Assessment

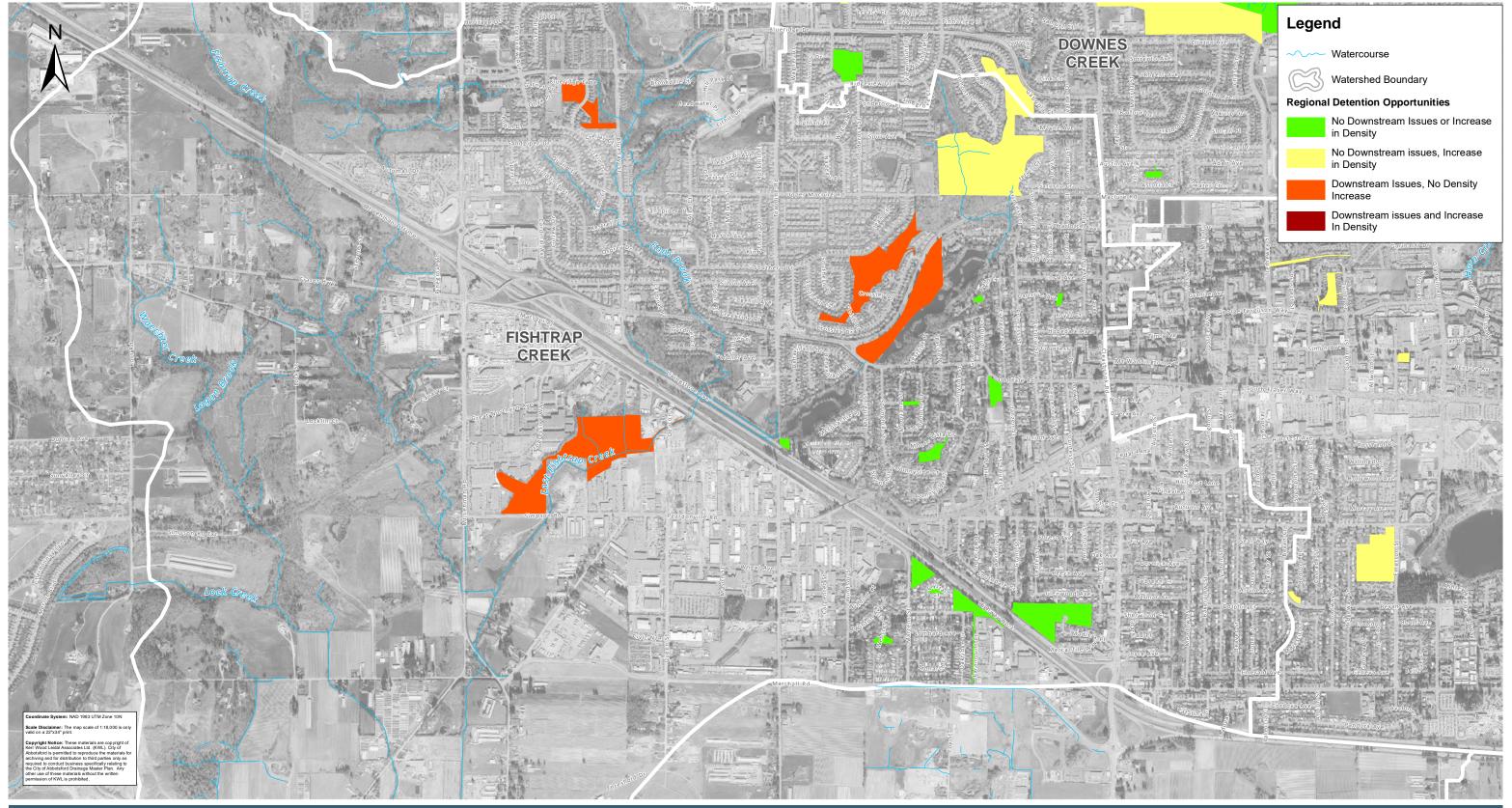
Infiltration potential was assessed in GIS by using the current BC surficial geology layer (Soils), the provided floodplain layers received from the City, and any special consideration layers from completed past projects. Any soils that contained sand, gravels or a combination of both was estimated to be well draining soils where 100-year infiltration may be possible. Soils that did not contain sand or gravel were assumed to be poorly draining soils and only able to infiltrate the 6-month storm. Figure 9-4 shows the resulting infiltration assessment. The infiltration map should be incorporated in the recommended Stormwater Source Control Bylaw to guide selection of source control measures. Approximately 57% of the area within the Urban Drainage Boundary has good infiltration potential.

Drainage Master Plan


Project No.	510.152
Date	June 2018
Scale	1:62,000

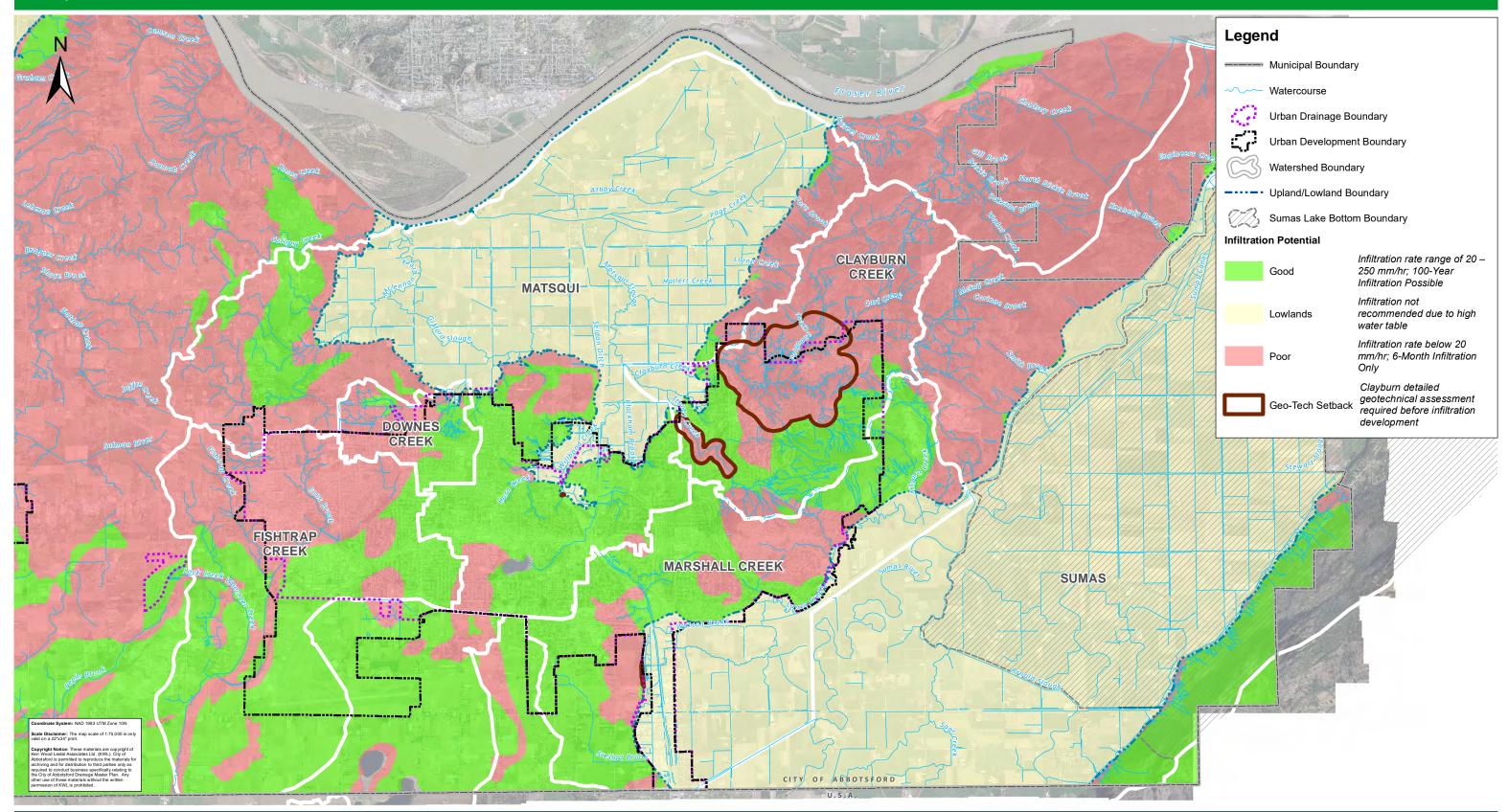
Detention Facilities Overview

Drainage Master Plan


Project No.	510.152
Date	June 2018
Scale	1:19,000

Detention Facilities City Core

Drainage Master Plan


Project No.	510.152
Date	June 2018
Scale	1:18,000

Detention Facilties Fishtrap Watershed

Figure 9-3

Drainage Master Plan

Project No.	510.152
Date	June 2018
Scale	1:75,000

Infiltration Opportunities

Figure 9-4

10. River Management Programs

10.1 Nooksack River Overflow

Major flooding of West Sumas Prairie and the Washington State cities of Everson, Sumas and the unincorporated areas of Whatcom, occurred in November 1990 when the overflow from the Nooksack River flooded into the Sumas River basin.

The Nooksack River International Task Force (NRITF) was established comprising members from both Canada and the United States, in response to the November 1990 flooding. Canadian members are from Federal, Provincial and the City of Abbotsford. Its focus is on the following four strategies:

- 1. Improving emergency response to Trans-Boundary flooding;
- 2. Improving floodplain management;
- 3. Restoring the early 1970's Nooksack River flow capacity; and
- 4. Developing a comprehensive Flood Damage Reduction Plan.

Focus since 2011 has been on Strategy #4. Work done to date included:

- Conversion of 1D model to a calibrated 2D MIKE FLOOD model for Sumas Prairie in Canada. Three 100-year flood scenarios were developed:
 - 1. Nooksack River overflow with embankment breaches (Southern Railway & Whatcom Road),
 - 2. Nooksack River overflow with embankment overtopping (no breaches), and
 - 3. No overflow.
- Creation of a Flood Emergency Response Model for Sumas Prairie covering both Abbotsford and Washington state lowlands (requires further calibration).
- Installation of a gauge at Everson, WA which is the location where the Nooksack overflow would occur.
- Development of a methodology to estimate potential flooding extents in West Sumas Prairie given recorded water levels at the gauge.

The last NRITF meeting was in February 2011 and the last NRITF Technical Meeting occurred in November 2012. In November 2017, the City met with the Province and their consultants KWL to discuss work completed to date. Potential next steps include creation of a HAZUS model to estimate flood damage under a 100-year flood event on the Canada side, and a NRITF meeting to be set up by the Province and their US counterparts to reconnect on this issue. This has not been included in the DMP now.

10.2 Asbestos Cement Issue in the Sumas River

Naturally-occurring asbestos is present in Swift Creek in the State of Washington, USA, resulting from a historical landslide in the 1920s. Swift Creek is a tributary of the Sumas River, which runs through Abbotsford and eventually drains into the Fraser River. The Sumas River carries sediment from the USA and deposits it in the Sumas Prairie. To date, the landslide remains active and continues to contribute sediments to Swift Creek and Sumas River.

In 2009, the City of Abbotsford along with Federal and Provincial environment and health agencies, was notified by the US Environmental Protection Agency (USEPA) in Washington State of renewed concerns regarding potentially elevated naturally occurring asbestos levels in the Sumas River sediments.

To maintain the productivity of farmland in Sumas Prairie, sediment deposited in the bed of Sumas River needs to be removed on a regular basis to provide good drainage and prevent flooding. With asbestos in the sediment, the excavated material is deemed a health hazard as there is a risk of the asbestos drying out and becoming air-borne. Removing the excavated material safely requires trucking it to a safe disposal site, keeping it wet, covering it with a 0.5m thick blanket of clay, and retaining a host of environmental and geotechnical specialists to monitor all aspects of the excavation. To remove the

sediment and provide drainage in Sumas River, the Sumas Prairie Dyking, Drainage and Irrigation District incurred a clean-up cost of \$125K in 2010 and \$52K in 2011.

In 2015, Whatcom County presented the Swift Creek Sediment Management Action Plan (SCSMAP) at the Swift Creek Science Symposium. One of the elements of the action plan is the design and construction of sediment basins at the toe of the landslide (Goodwin Reach sediment basins). The implementation of the action plan (estimated \$15M dollars) is pending financial support from Washington State. Regardless whether the SCSMAP goes ahead or not, the asbestos-laden sediment deposited in the Swift Creek/Sumas River will still need to continue to be periodically removed to maintain an acceptable drainage level of service. The clean-up costs could be significant. The City continues to work with Provincial and Federal Government on the asbestos issue and clean-up costs, as water and sediment is a Provincial responsibility, and the transboundary nature of the flow of sediment is a Federal issue.

10.3 Vedder River Sediment Management Program

The Vedder River / Canal system conveys water from Chilliwack Lake and its headwaters to the Fraser River. The Vedder River flows west and north from Chilliwack to join the Sumas River (downstream of Barrowtown Pump Station in Abbotsford) via Vedder Canal, before its confluence with the Fraser River. The system from Vedder Crossing to the Highway 1 bridge (near Barrowtown Pump Station) is approximately 12 km. A map of the Vedder River and Canal system is showing in Figure 10-1.

Flood control dykes are located along both sides of the Vedder River and Canal. These dykes are essential for protecting properties in the cities of Abbotsford and Chilliwack. Natural fluvial processes carry sand and sediment from Chilliwack River basin upstream into the Vedder River and Canal. Historically the annual sediment deposits averages 50,000 to 60,000 m³/year. The sediment reduces the channel capacity and increases the flood threat to the surrounding communities. Removal of sediments is necessary to maintain the level of flood protection.

The Vedder River Management Committee (VRMC) was established in 1983 to manage this ongoing flood threat. The Management Committee includes representatives from the City of Abbotsford, City of Chilliwack, Ministry of Forests, Lands, Natural Resource Operations and Rural Development (MFLNRORD), and Department of Fisheries and Oceans (DFO). It is supported by a Technical Committee. The Technical Committee is responsible for making recommendations to the Management Committee for a sediment removal plan every second year on the even number years. The timing was selected to avoid disrupting Pink Salmon spawning.

The sediment removal work is typically carried out in two phases: (a) Planning Phase and (b) Removal/Assessment Phase.

a. Planning Phase

The need for sediment removal is established by carrying out repeat surveys of permanently established cross sections to calculate sediment volumes. A hydraulic model is used to calculate the water surface profile and evaluate the change in the dyke freeboard. (A minimum freeboard of 0.75m is to be maintained at a 200-year design flood of 1,470 m³/s, with starting water level elevation of 7.4m at the Highway 1 Bridge.) Sites for sediment removal are selected in consultation with a registered biologist and to provide improvement in the channel capacity where it is most required.

The Planning Phase for the sediment removal cycle typically begins early in the even number years. The following planning studies are typically completed:

- Survey of the Vedder River and Canal Profile,
- Hydraulic Modelling, and
- Sediment Removal Environmental Planning.

DRAINAGE MASTER PLAN

Once the planning process is complete and potential sediment removal sites are identified, the following approvals are typically applied by the end of May:

- Water Sustainability Act,
- Fisheries Act,
- Navigable Waters Protection Act, and
- Canadian Environmental Assessment Act.

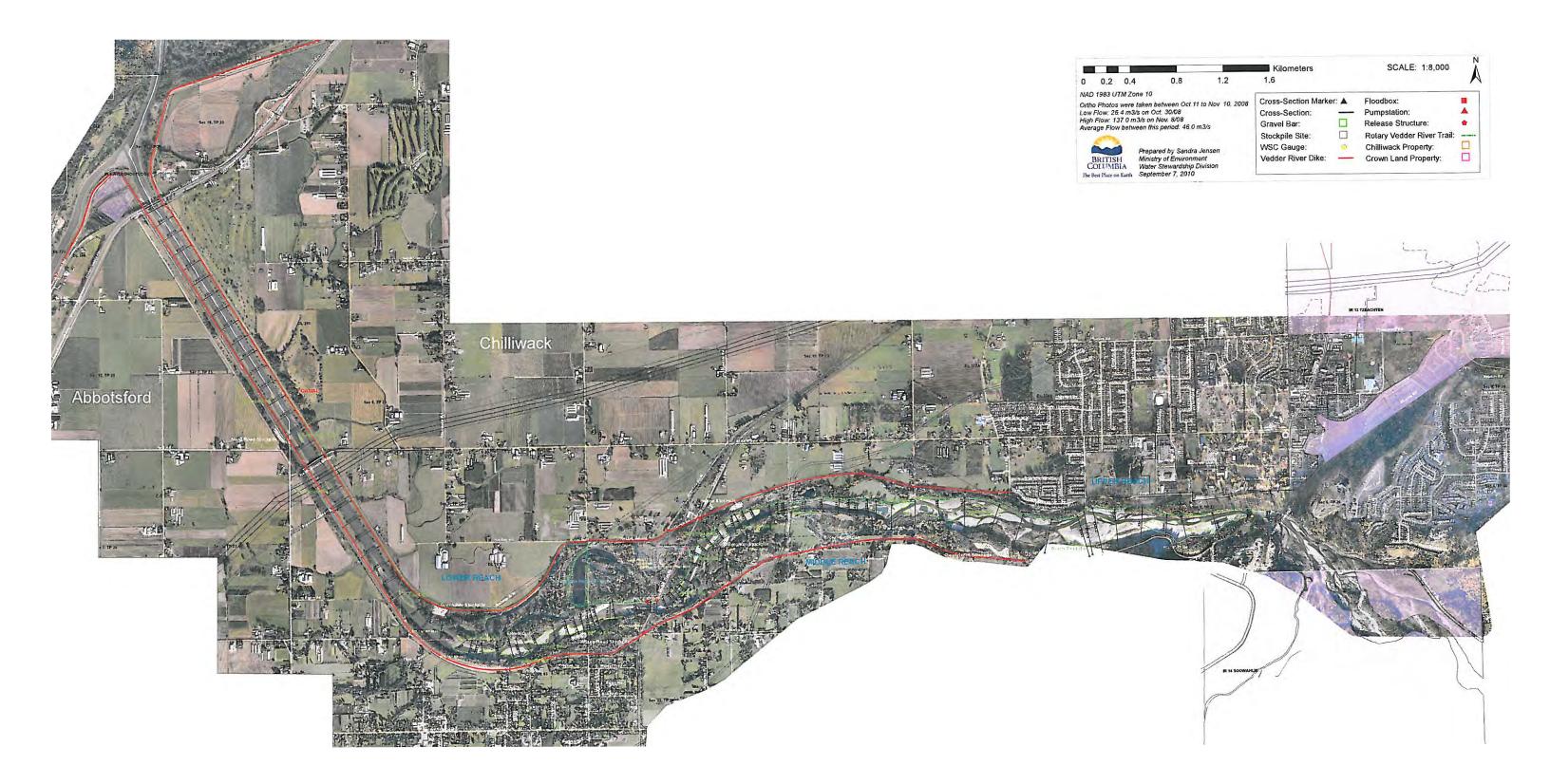
The sale of sediment is tendered jointly with the three agencies (City of Abbotsford, City of Chilliwack, and MFLNRO) according to the jurisdiction of the sediment removal sites. The tender process typically takes place in June. Sediment removal by the Contractor is permitted within the Fisheries window. The Contractor is typically allowed to stockpile the removed sediment on a designated location and will have approximately 2 years to remove it.

b. Removal/Assessment Phase

Consultants are retained for environmental monitoring during removals, and post-removal surveying.

c. Cost Sharing

A cost sharing agreement was established in February 2010 to share cost between the three agencies. There is a different cost-sharing arrangement for the planning and removal/assessment phases of the program. In the planning stages, the actual removal volumes are unknown and yet to be determined. A historically agreed to formula is applied as below for the costs incurred in the Planning Phase:


- City of Abbotsford 15%
- City of Chilliwack 33%
- Province 52%

For the removal/assessment phase, consultant fees are cost shared based on the actual volume of sediment removed. Typically, the sale of sediment would subsidize these costs, if positive bids are received.

City of Abbotsford Drainage Master Plan

Project No.	510-152
Date	June 2018
Scale	Not to Scale

Vedder River and Canal System

Figure 10-1

11. Proposed Capital Expenditures

11.1 Drainage Upgrades in Studied Areas

Storm sewer and culvert projects include existing infrastructure with a reported capacity deficiency. To establish Capital Costs for storm sewer and culvert upgrade projects, the infrastructure undersized for flows under existing land use conditions without climate change were sized for the existing land use flows and a construction cost estimated. Engineering and contingency costs were added. The DCC Costs were then estimated by resizing the pipes for future land use with climate change flows, recosting the larger upgrades, and subtracting the above Capital Costs. All costs are in 2017 dollars.

Flood protection works projects, existing detention facility upgrade projects, and studies were considered Capital Cost projects. Urban Creek Stabilization projects were included as DCC Cost projects as is currently the practice in the City's existing budgeting documents.

The prioritization criteria presented in Table 5-1 were applied and all projects were sorted by descending priority with the highest priority projects scheduled for initiation in 2019.

The City's 2017 *Engineering Budget Book* showed annual budgets for Storm Sewer and Culvert Renewal projects (\$616,000/yr) and for Urban Creek Stabilization projects (\$281,000/yr). The other project types did not have a set annual budget. During the project prioritization task, it was found that using \$616,000 per year for storm sewer and culvert renewal projects would mean that these projects would be completed in 37 years, by 2056. Furthermore, the highest priority 'short term' projects could not be completed within the first 5 years. It is proposed that the annual funding be increased to \$960,000 per year to expedite the 'short term' projects and complete all projects within 25 years, by 2043. The \$281,000 per year budget for Urban Creek Stabilization appeared to be adequate. Each project in the other project types was assigned a construction timeline (year) based on available information and engineering judgement. The timelines for these projects can be adjusted to suit funding levels.

Table 11-1 summarizes the various project types, the construction timelines, and Capital and DCC Costs. Individual projects are listed in Table C3 in Appendix C.

Brojaat Tyraa	Time F	rame	Capital Cost		DCC Cost		Total Cost	
Project Type	From	То	Total	Annual	Total	Annual	Total	Annual
Storm Sewer and Culvert Renewal								
Short Term	2019	2023	\$4,800,000	\$960,000	\$1,526,000	\$305,200	\$6,326,000	\$1,265,20
Medium Term	2024	2028	\$4,800,000	\$960,000	\$834,000	\$167,000	\$5,634,000	\$1,127,00
Long Term	2029	2043	\$13,218,000	\$881,000	\$1,332,000	\$89,000	\$14,661,000	\$977,00
At Time of Development	2019	2043	\$0	\$0	\$15,953,000	\$638,000	\$15,953,000	\$638,00
Clayburn Creek Lowland Works								
Short Term	2019	2023	\$0	\$0	\$1,292,000	\$258,000	\$1,292,000	\$258,00
Medium Term	2024	2028	\$0	\$0	\$572,000	\$114,000	\$572,000	\$114,00
Long Term	2029	2043	\$0	\$0	\$225,000	\$15,000	\$225,000	\$15,000
Detention Facility Upgrades						· · · · · · · · · · · · · · · · · · ·		
Short Term	2019	2023	\$572,000	\$114,000	\$0	\$0	\$572,000	\$114,00
Medium Term	2024	2028	\$215,000	\$43,000	\$0	\$0	\$215,000	\$43,00
Long Term	2029	2043	\$86,000	\$6,000	\$0	\$0	\$86,000	\$6,00
Long Term – New Ponds	2040	2043	\$0	\$0	\$6,067,000	\$1,517,000	\$6,067,000	\$1,517,00
Urban Creek Stabilization								
Short Term	2019	2023	\$0	\$0	\$1,405,000	\$281,000	\$1,405,000	\$281,00
Medium Term	2024	2028	\$0	\$0	\$1,405,000	\$281,000	\$1,405,000	\$281,000
Long Term	2029	2043	\$0	\$0	\$1,223,000	\$82,000	\$1,223,000	\$82,000
Miscellaneous								
Short Term*	2019	2023	\$685,000	\$137,000	\$0	\$0	\$685,000	\$137,00
Long Term*	2041	2043	\$0	\$0	\$5,532,000	\$1,844,000	\$5,532,000	\$1,844,00
Total Studied Areas								
25-Years	2019	2043	\$24,376,000	\$975,000	37,366,000	\$1,495,000	\$61,852,000	\$2,474,00

Table 11-1: Summary of Drainage Projects, Timelines, and Costs for Studied Areas (by Project Type)

11.2 Drainage Upgrades in Unstudied Areas

The unstudied area costs were separated into short, medium, and long-term projects based on the distribution within the reference studied areas (see Section 4 for discussion). The costs were then split between Capital and DCC based on the ratio of Capital vs DCC of the storm sewer, culvert, creek, and detention projects in the reference studied areas. The unstudied area project cost estimates are summarized in Table 11-2.

Project	Time I	Frame	Capital Cost		DCC (Cost	Total Cost		
Туре	From	То	Total	Annual	Total	Annual	Total	Annual	
Short Term	2019	2023	\$2,446,000	\$489,200	\$1,772,000	\$354,400	\$4,217,000	\$843,400	
Medium term	2024	2028	\$6,706,000	\$1,341,200	\$4,856,000	\$971,200	\$11,561,000	\$2,312,200	
Long Term	2028	2043	\$9,023,000	\$602,000	\$6,534,000	\$436,000	\$15,556,000	\$1,038,000	
Total Unstudied Areas									
25-Years	2019	2043	\$18,175,000	\$727,000	\$13,162,000	\$526,480	\$31,334,000	\$1,253,360	

Table 11-2: Summary of Drainage Projects, Timelines and Costs for Unstudied Areas

11.3 Planning Studies

A total of 19 planning studies are proposed in this DMP. A list of studies is provided in Table B1 in Appendix B. They include:

- Approved studies starting from year 2019, as listed in the 2018-2022 Project Summary Renewal and Replacement (RR) and Strategic Initiatives & Opportunities (SIO), and 2017-2021 Drainage Capital Plan (Approved);
- Recommended Bylaw updates, including Subdivision Development Bylaw, Stormwater Source Control Bylaw Updates, Infill Development Strategy, etc.;
- Stormwater Fees and Charges Feasibility Study;
- ISMPs and Drainage Master Plan Update;
- Proposed studies to investigate reported local flooding issues; and
- Proposed dike and pump station upgrade and back-up power studies.

The planning studies cost breakdown is provided in Table 11-3.

Table 11-3: Summary of Timelines, and Costs for Planning Studies

Project Type	Time Frame		Capital Cost	
	From	То	Total	Annual
Short Term	2019	2023	\$1,707,000	\$341,000
Medium Term	2024	2028	\$230,000	\$46,000
Long Term	2029	2043	\$150,000	\$10,000
Total Planning Studies				
25-Years	2019	2043	\$2,087,000	\$83,480

11.4 Pump Station Upgrades

There are four pump stations, namely McLennan Creek, Matsqui Slough, DeJong and Vanderloos, located along the Matsqui dike. The Barrowtown pump station is located at the northeast end of the Sumas dike. Full pump station replacement cost has been included in the dike upgrading costs, as noted in Section 11.5. However, costs of additional pump station upgrading that is not included in the pump station replacement cost in Section 11.5, is provided in Table 11-4. It includes expenditures to provide back-up power for all the pump stations and to improve pumping head for the Barrowtown pump station. Pump station upgrading cost is considered 100% capital cost.

Project Type	Time Frame		Capital Cost	
гојесттуре	From	То	Total	Annual
Barrowtown Pump Head Upgrade				
Long Term	2041	2043	\$1,750,000	\$583,000
Barrowtown Back-up Power Construction				
Long Term	2041	2043	\$4,131,000	\$1,377,000
Back-up Power Construction (other pump stations)				
Long Term	2041	2043	\$3,079,000	\$1,026,000
Total Pump Station Upgrade Projects				
Long Term	2041	2043	\$8,960,000	\$2,987,000

Table 11-4: Summary of Timelines, and Costs for Pump Station Upgrade Projects

11.5 Dike Upgrading Cost

The total improvement cost for the Matsqui, Vedder and Sumas dikes is estimated to be to meet the latest requirement for sea level rise, climate change and seismic standards. As the timing and amount of funding is unknown, dike upgrades are considered medium to long term projects to be completed by year 2050. Assumptions used in the cost distribution are provided below:

- Medium term (5-15 year): raise all three dikes by 0.5 m and provide full seismic upgrade to meet the Provincial high-consequence performance criteria.
- Long term (16-32 year): complete the remaining dike raising and other construction components including utilities, seepage, access and roads, turnouts, rail crossings, drainage, bank protection, land acquisition and pump station replacements.

The cost breakdown is provided in Table 11-5.

Table 11-5: Summary of Timelines, and Costs for Dike Upgrade Projects

Project Type	Time Frame		Capital Cost	
Рюјест туре	From	То	Total	Annual
Matsqui Dike Upgrade				
Medium Term	2024	2033	\$73,924,000	\$7,392,000
Long Term	2034	2050	\$82,571,000	\$4,857,000
Vedder Dike Upgrade				
Medium Term	2024	2033	\$36,094,000	\$3,609,000
Long Term	2034	2050	\$59,355,000	\$3,491,000

Project Type	Time Frame		Capital Cost	
Project Type	From	То	Total	Annual
Sumas Dike Upgrade				
Medium Term	2024	2033	\$130,206,000	\$13,021,000
Long Term	2034	2050	\$32,220,000	\$1,895,000
Total Dike Upgrade				
27-Years	2024	2050	\$414,370,000	\$15,347,000

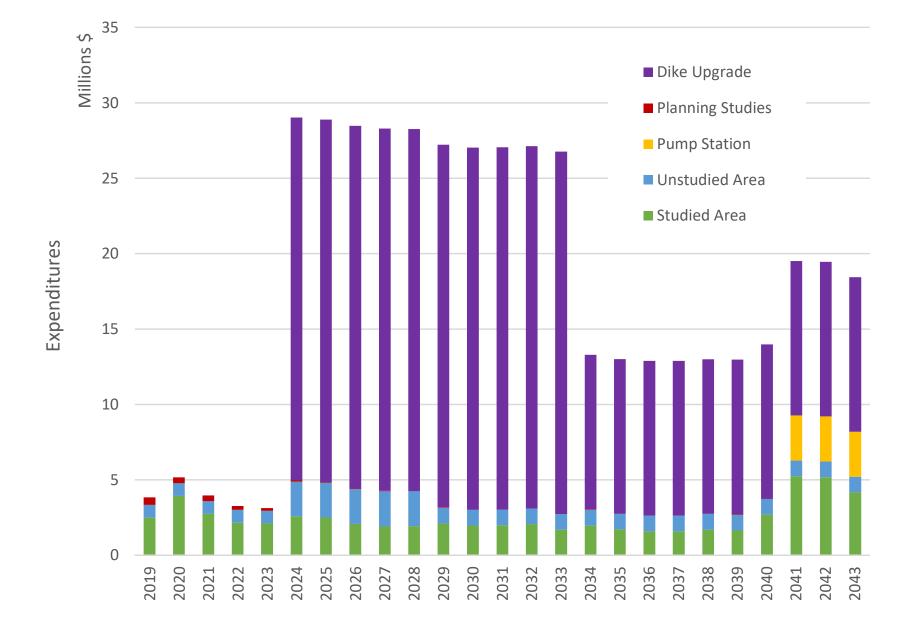
11.6 Summary of Total Drainage Capital Expenditures

Figure 11-1 and Table 11-6 provide a summary of the proposed drainage capital plan annual expenditures, which is the sum of all the costs listed in Sections 11.1 to 11.5. The total capital expenditures are estimated to be \$447M for the next 25 years (2019-2043), with an average annual cost approximately \$18M. It is assumed that dike improvements will go beyond the 25 year plan and be completed by year 2050. An additional \$72M will be required for dike improvement from 2044-2050.

Approximately 77% of the total \$447M capital expenditure is attributed to dike improvement. Without dike improvement cost, the total capital expenditures are \$104M, with an average annual cost of \$4.2M. The 2041-2043 non-dike related capital expenditures are higher because many high-cost, low-priority projects (such as pump station upgrades, new detention ponds and storm diversion construction) are allocated to the end the master planning period.

11.7 Capital Spending and Reserve Balance

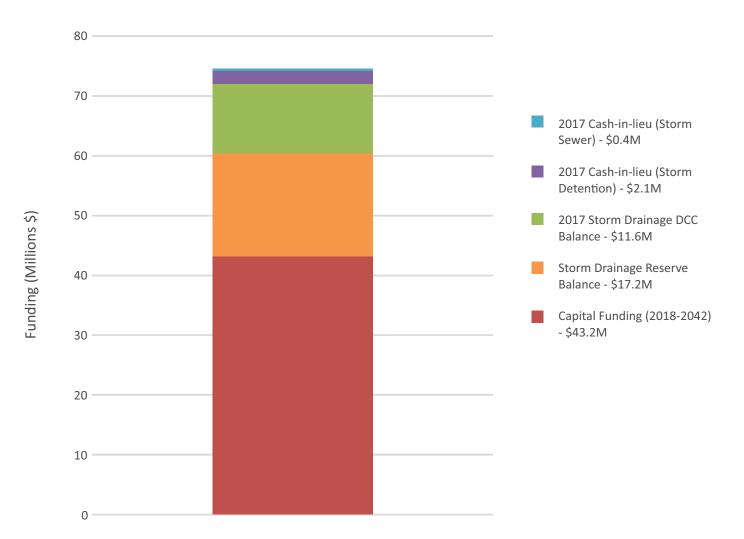
The City provides drainage upgrades through many funding sources:


- grants,
- Community Works Fund,
- DCC,
- Reserves, and
- Debt (if required).

A total of \$74.5M funding is currently available through capital spending budget and reserve balance on drainage upgrades until 2042. Figure 11-2 shows the break down of funding amount from various sources.

 Project No.
 510-152

 Date
 June 2018


 Scale

Total Drainage Capital Expenditures

Figure 11-1

City of Abbotsford Drainage Master Plan

Project No.	510-152
Date	June 2018
Scale	

Capital Spending and Reserve Balance

Figure 11-2

12. Stormwater Drainage Fee Options

Based on the drainage capital expenditures summarized in Section 11.0, stormwater drainage fee options are explored to finance the DMP.

12.1 Background

The City of Abbotsford covers a drainage area over 37,000 ha, which includes Urban Development Area, Matsqui Prairie, Sumas Prairie, Upland Rural Area, and Glen Valley. The City currently finances drainage infrastructure through a combination of property taxes, urban storm drainage user fees and local service area charges, Development Cost Charges (DCCs), grants and other recoveries. Users within Urban Development Boundary, Matsqui and Sumas Prairie are paying drainage fee through property tax to fund drainage system improvement and maintenance programs. Upland Rural Area is not paying for any fee for drainage, and the services is limited to clean roadside ditches and replacing major culverts under road in emergency situations. Glen Valley is managed by a private diking district, and the City collects annual fee on their behalf through property tax. Through the data collection phase of the DMP, the total cost for the short-term, mid-term and long-term drainage projects was estimated. For each project, the cost was distributed between DCC eligible capital and other capital revenue sources based on site specific information.

In each calendar year, the City allocates a capital drainage budget to address existing drainage deficiencies with the highest priority. The capital budget is partially funded by annual charges on the property tax bill. For new development and re-development that require drainage upgrades and expansion, the drainage budgets are financed through DCCs based on the Development Cost Charge Bylaw. DCCs also fund bank stabilization and community detention projects. The Bylaw, outlines the charges that new developers are required to pay for roads, drainage, sewer, water, and parks services. The charges vary by property land use type, with different rates set for residential, commercial, industrial, and institutional users.

A drainage fee structure has been adopted by many municipalities in BC and across Canada for recovering costs of stormwater service. The City is interested in exploring options for amending its current stormwater revenue structure, which includes a combination of drainage fees and taxation. Drainage fees may be established based on the estimated annual drainage capital and operating costs. Typically, a drainage fee model does not change the current local service area charges or DCCs. It only changes the potion of the program that is funded through the general tax levy. With a drainage fee, the charge basis is correlated to a property's impact on the stormwater system directly, offering increased fairness and equity in allocating program costs among all users, regardless of taxation status.

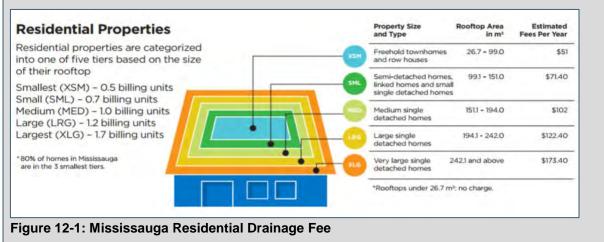
12.2 Drainage Fee Model

There are around 30 municipalities across Canada that have implemented a stormwater user fee and there are an estimated 1,500 stormwater municipalities across the US that have adopted drainage fee structures. A review of best practices of stormwater fees and charges in US and Canada identified two commonly used fee structures:1) Fixed Fee, and 2) Variable Rates.

Details on the typical design and examples of each model are outlined in this section.

Fixed Fee

A fixed fee model involves user charges that are allocated to customers based on property size, property type, or some other indicator such as the number and size of water meters. Fixed fees can be designed as either a "flat fee", with the same fee or rate applied to all properties, or a "tiered flat fee", in which the fee varies according to property zoning and land use.


Fixed fee models provide small advantages over the traditional general fund taxation model by shifting revenues off the tax bill to a "user charge" and improving transparency in the relationship between costs and levels of service for stormwater management. A primary benefit of flat rate models is that they are simple, and relatively easy to implement.

Example - City of Mississauga, Ontario

The City of Mississauga administers a drainage fee with a tiered flat fee for residential properties and a variable rate for industrial, commercial, and institutional customers. Residential properties are grouped into one of five fee classes according to three property characteristics:

- property size;
- property type (e.g. single family residential, multi-family residential); and
- rooftop area (m²).

A graphic showing the thresholds associated with each of the five fee classes is shown in Figure 12-1.

The tiered model simplifies the rate calculation but may be considered slightly less equitable for customers that only marginally fit into a fee class (e.g., users with a rooftop area just below or above the category threshold). While the model considers the impacts of impervious rooftop area, it does not consider other factors such as pavement area, which also have a significant impact on loads to the stormwater system. This means that a property with a large roof could pay more than a property with a small roof but large parking surface such as an apartment building.

Variable Rate

A variable rate model involves user charges that are assigned as a unique charge for each customer, based on the total footprint area of impervious (or "hard") surface on their property (e.g., roof covering and pavement materials). For example, a property with a large proportion of hard surface (e.g., retail shopping plaza) would pay a higher rate than an equally sized property with less impervious area (e.g. a single-family detached home).

DRAINAGE MASTER PLAN

The total impervious area is strongly correlated to the amount of stormwater runoff and pollutant loading each customer discharges into the stormwater system. Legal precedents and case law in the U.S. affirms the use of impervious area as a key variable to allocate stormwater program costs to individual properties.

Variable rate models are considered more equitable by allocating drainage costs to users based on their load on the stormwater system. However, they require a much higher cost and administrative effort to design, implement, and manage these systems on an ongoing basis. For a city the size of Abbotsford, implementing a variable rate could require a new full-time employee with specialized technical and economic/financial expertise in design and implementation.

Example – The City of Victoria

The City of Victoria's drainage fee is authorized under the Sanitary Sewer and Stormwater Utilities Bylaw No. 14-071 (2015). Users pay an annual variable charge according to the following factors:

- impervious area (roof, pavement), measured through building plans, aerial photos, and GIS mapping;
- intensity code base fee according to property type (e.g. low density residential, industrial);
- street frontage area (m²) multiplied by a standard rate by street class (e.g. \$1.67/m² for local streets \$4.09/m² for arterial streets). This measure serves as an indicator of the level of effort for street cleaning services provided by the City;
- Codes of Practice status, whereby certain high-interest properties pay an additional annual rate to participate in a program to install onsite pre-treatment components; and
- rainwater management credits for properties that install sustainable rainwater management features (e.g. rain gardens) in alignment with the City's Rainwater Rewards Program.

The key features of the City of Victoria's drainage fee program are illustrated in Figure 12-2.

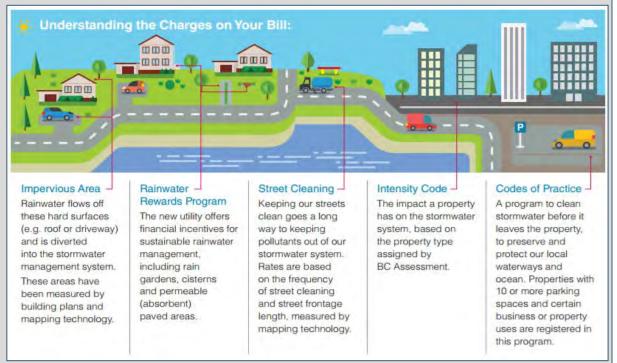


Figure 12-2: City of Victoria Drainage Fee

DRAINAGE MASTER PLAN

12.3 Considerations on Cross Border Inflow

For areas that receive cross border inflow, the inter-jurisdictional issues vary on a city-vs-city or city-vscountry basis. The drainage fee may be defined by a water/sewer servicing agreement, if there is one in place. Pipe discharges from the upstream municipality (City A) to the downstream municipality (City B) are usually easy to quantify. The impacts to City B's stormwater program and consequently to City's user-fee revenue determines the base charge to feepayers. On the other hand, watercourse drainage from City A to City B is more complicated. The options are:

- Option 1 the incremental costs of external drainage could be billed separately to the upstream municipality. This requires the City B to quantify its own capital cost on stream restoration, flow and sediment management, and ongoing maintenance that are attributable to City A. This incremental cost is not included in City B's overall stormwater user-fee revenue requirement for its feepayers); or
- Option 2 the total costs comprise the overall stormwater user-fee revenue requirement and are shared among downstream municipality's feepayers (i.e., which lets City A off the hook at the expense of City B feepayers).
- Option 2B it reflects an accounting adjustment to Option 2 in that City B would pay City A's charge so that City B feepayers would have the lower base charge of Option 1. (for example, City A's charge can be subsidized using tax funds rather than a fee exemption).

For cross border cost charges, an overarching caution is that whenever a city initiates a new fee/charge to an adjacent community, it can expect that a new fee/charge to charged back in return. In practice, it is common that cities negotiate and modify existing inter-jurisdictional transfers, shared services agreements., or as an example City B gives "super-credits" on City A's drainage fee (when City A owns property in City B) in exchange for in-lieu services provided by City A to City B (e.g., bridge/culvert/road maintenance, street sweeping).

12.4 Recommendations

There will likely be a high level of effort and long timeline involved in the implementation of the stormwater fees and charges. Given the political and socio-economic uncertainties involved in adopting a new funding mechanism under these circumstances, it is suggested that a future feasibility study be conducted to explore and to investigate, analyze, and formulate an appropriate rate structure and ultimately develop a recommended implementation strategy for Council to decide how to proceed with the implementation phase.

The level of effort, time, and cost required to complete a feasibility study varies widely. A budget in the range of \$150,000 to \$200,000 is recommended for this purpose.

13. Summary of Findings and Recommendations

13.1 Master Plan Key Components

A full range of drainage upgrade projects have been identified within the 2043 OCP planning horizon and costed in 2017 dollars, with a total value of approximately **\$447M**. It is assumed that dike improvements will go beyond the 25 year plan and be completed by year 2050. An additional \$72M will be required for dike improvement from 2044-2050.

The following projects are key to the 2043 OCP capital plan:

- 1. **Storm Sewer and Culvert Renewal** a total of 168 storm sewers, 42 culverts and 2 bridges will require capacity upgrades to accommodate the existing flood conveyance needs and the increased flows from the anticipated growth in the City.
- 2. Clayburn Village Berms and Channel Widening and Pump Station Lowland flood protection works including berms with floodboxes, channel widening, and pump station will be required to address the existing flooding in the lowland Clayburn Village. Some of the protection works, such as berm construction is underway.
- 3. Detention Facility Upgrades Downes Creek and Clayburn Creek ISMP studies identified 34 detention facilities that require inlet/outlet modification and/or storage expansion to meet volume control goals. This accounts for about 10% of the City's total 380 detention facilities. One new detention pond was proposed within the Marshall Creek watershed as a short term project and two new detention ponds were proposed in the Downes Creek watershed as long term projects.
- 4. **Urban Creek Stabilization** Erosion protection projects include bank armouring and construction and expansion of sediment traps. Sediment removal is considered a maintenance program and is excluded from the project list.
- 5. **Unstudied Areas** Approximately 50% of the City area has not been assessed by drainage studies and presents a data gap in preparing a comprehensive City-wide DMP. High level drainage upgrading costs were estimated for the unstudied areas using unit costs from studied areas with similar land use type. The estimated projects and costs will be updated once future studies are completed.
- 6. **Planning Studies** Planning studies were compiled from the City's approved capital project list, flooding issues to be addressed and recommendations from historical studies and this DMP.
- Pump Station Upgrades All five pump stations, including Barrowtown, McLennan Creek, Matsqui Slough, DeJong and Vanderloos, will need backup power to increase resiliency in the event of power failure. The Barrowtown pump station also needs upgrade to increase system head to allow high speed operation, increasing pump flow.
- 8. **Dike Upgrades** The dike upgrading assessment includes three dikes, including the Matsqui Dike (Fraser River), Vedder Dike (Vedder Canal and Fraser River), and Sumas Dike (Sumas River, Saar Creek, and Arnold Slough). A conceptual upgrading cost was estimated for seismic upgrade and geometric upgrade to meet the Provincial "high consequence" performance criteria and the 1 m sea level rise under climate change conditions, respectively.
- 9. **Stormwater Fees and Charges** A review of stormwater fees and charges best practices in Canada and US identified two commonly used fee structures: flat rate and variable rate. A future feasibility study is recommended to explore an appropriate rate structure and develop a recommended implementation strategy for the City.
- 10. **Stormwater Policy and Criteria** Stormwater policy review led to recommendations on establishing City-wide Stormwater Source Control bylaw, additions to the Development Bylaw and enforcement of other existing bylaws.

13.2 Total Drainage Capital Expenditures

The total capital expenditures are estimated to be \$447M for the next 25 years (2019-2043), with an average annual cost approximately \$18M. An additional \$72M will be required for dike improvement beyond the 25 year study timeline (from 2044-2050).

Approximately 77% of the total \$447M capital expenditure is attributed to dike improvement. Without dike improvement cost, the total capital expenditures are \$104M, with an average annual cost of \$4.2M. Many high-cost, lower priority projects (such as pump station upgrades, new detention ponds and storm diversion construction) were scheduled near the end the master planning period (2041-2043).

A summary of drainage projects by project type, timelines and costs is provided in Table 13-1. Table B1 in Appendix B and Table C3 in Appendix C provide additional details on individual projects. The DMP does not include system operation & maintenance and asset condition replacement.

13.3 Recommendations

Based on the findings in the DMP, it is recommended that the City:

Periodically Update DMP

- 1. Update the DMP as additional drainage studies and floodplain mapping (Willband and Fishtrap Creek ISMPs and additional floodplain modelling), are completed.
- 2. Update projects and costs for the unstudied areas as these areas are assessed. Estimated costs in this DMP for these unstudied areas are placeholder values for long term planning and budgeting only.
- 3. Conduct a back-up power study for the McLennan Creek, Matsqui Slough, DeJong, and Vanderloos pump stations.
- 4. Consider developing a Dike Master Plan to refine the dike upgrading cost and to develop a feasible phased approach for dike upgrades.

Update Policies

- 5. Develop an enforceable City-wide Stormwater Source Control Bylaw for new development and redevelopment.
- 6. Add requirements to incorporate climate change and fish friendly approaches in the Development Bylaw and require minimal removal and compaction of surficial soil during construction and development.

DMP Implementation

- 7. Adjust the annual capital budget to accommodate the capital costs of the drainage system upgrades. It is proposed that the annual funding be increased from \$616,000 to \$960,000 per year to expedite the 'short term' storm sewer and culvert renewal projects and complete all projects within 25 years, by 2043.
- 8. Incorporate growth-related upgrades and their costs in the City's Development-Cost-Charge program.

- 9. Conduct feasibility and predesign phases for each project prior to design and construction. Capital plan projects were identified and costed with limited site information.
- 10. Conduct a feasibility study on Stormwater Fees and Charges to explore an appropriate rate structure and implementation strategy for the City.

Broject Turpe	Time Frame		Capita	Cost	DCC Cost		Total Cost	
Project Type	From	То	Total	Annual	Total	Annual	Total	Annual
Storm Sewer and Culvert Renewal	-				-			
Short Term	2019	2023	\$4,800,000	\$960,000	\$1,526,000	\$305,200	\$6,326,000	\$1,265,200
Medium Term	2024	2028	\$4,800,000	\$960,000	\$834,000	\$167,000	\$5,634,000	\$1,127,000
Long Term	2029	2043	\$13,218,000	\$881,000	\$1,332,000	\$89,000	\$14,661,000	\$977,000
At Time of Development	2019	2043	\$0	\$0	\$15,953,000	\$638,000	\$15,953,000	\$638,000
Clayburn Creek Lowland Works								
Short Term	2019	2023	\$0	\$0	\$1,292,000	\$258,000	\$1,292,000	\$258,000
Medium Term	2024	2028	\$0	\$0	\$572,000	\$114,000	\$572,000	\$114,000
Long Term	2029	2043	\$0	\$0	\$225,000	\$15,000	\$225,000	\$15,000
Detention Facility Upgrades								
Short Term	2019	2023	\$572,000	\$114,000	\$0	\$0	\$572,000	\$114,000
Medium Term	2024	2028	\$215,000	\$43,000	\$0	\$0	\$215,000	\$43,000
Long Term	2029	2043	\$86,000	\$6,000	\$0	\$0	\$86,000	\$6,000
Long Term - New Ponds	2040	2043	\$0	\$0	\$6,067,000	\$1,517,000	\$6,067,000	\$1,517,000
Urban Creek Stabilization								
Short Term	2019	2023	\$0	\$0	\$1,405,000	\$281,000	\$1,405,000	\$281,000
Medium Term	2024	2028	\$0	\$0	\$1,405,000	\$281,000	\$1,405,000	\$281,000
Long Term	2029	2043	\$0	\$0	\$1,223,000	\$82,000	\$1,223,000	\$82,000
Miscellaneous								
Short Term	2019	2023	\$685,000	\$137,000	\$0	\$0	\$685,000	\$137,000
Long Term	2041	2043	\$0	\$0	\$5,532,000	\$1,844,000	\$5,532,000	\$1,844,000

Table 13-1: Summary of Drainage Projects, Timelines, and Costs

	Time	Frame	Capital	Capital Cost		DCC Cost		Total Cost	
Project Type	From	То	Total	Annual	Total	Annual	Total	Annual	
Unstudied Areas									
Short Term	2019	2023	\$2,446,000	\$489,000	\$1,772,000	\$354,000	\$4,217,000	\$843,000	
Medium Term	2024	2028	\$6,706,000	\$1,341,000	\$4,856,000	\$971,000	\$11,561,000	\$2,312,000	
Long Term	2029	2043	\$9,023,000	\$602,000	\$6,534,000	\$436,000	\$15,556,000	\$1,038,000	
Planning Studies									
Short Term	2019	2023	\$1,707,000	\$341,000	\$0	\$0	\$1,707,000	\$341,000	
Medium Term	2024	2028	\$230,000	\$46,000	\$0	\$0	\$230,000	\$46,000	
Long Term	2029	2043	\$150,000	\$10,000	\$0	\$0	\$150,000	\$10,000	
Pump Station Upgrades									
Long Term	2041	2043	\$8,960,000	\$2,987,000	\$0	\$0	\$8,960,000	\$2,987,000	
Dike Improvements									
Medium Term	2024	2033	\$240,224,000	\$24,022,000	\$0	\$0	\$240,224,000	\$24,022,000	
Long Term	2034	2050	\$174,146,000	\$10,244,000	\$0	\$0	\$174,146,000	\$10,244,000	
Total Capital Work (25-Year)	2019	2043	\$396,000,000	\$16,000,000	\$51,000,000	\$2,000,000	\$447,000,000	\$18,000,200	
Total Capital Work (Dike Upgrades)	2044	2050	\$72,000,000	\$10,244,000	\$0	\$0	\$72,000,000	\$10,244,000	

An annual break down of the total capital expenditures is provided in Table 13-2.

Table 13-2: Summary of Annu		ual Drainage Capita	l Expenditure	
Year	Capital Cost	DCC Cost	Total Cost	
2019	\$1,948,000	\$1,893,000	\$3,841,000	
2020	\$2,216,000	\$2,958,000	\$5,174,000	
2021	\$2,396,000	\$1,569,000	\$3,965,000	
2022	\$1,713,000	\$1,559,000	\$3,272,000	
2023	\$1,619,000	\$1,506,000	\$3,125,000	
2024	\$26,424,000	\$2,590,000	\$29,014,000	
2025	\$26,589,000	\$2,302,000	\$28,891,000	
2026	\$26,374,000	\$2,093,000	\$28,467,000	
2027	\$26,353,000	\$1,935,000	\$28,288,000	
2028	\$26,324,000	\$1,937,000	\$28,261,000	
2029	\$25,634,000	\$1,585,000	\$27,219,000	
2030	\$25,584,000	\$1,453,000	\$27,037,000	
2031	\$25,584,000	\$1,467,000	\$27,051,000	
2032	\$25,585,000	\$1,543,000	\$27,128,000	
2033	\$25,584,000	\$1,173,000	\$26,757,000	
2034	\$11,856,000	\$1,441,000	\$13,297,000	
2035	\$11,891,000	\$1,109,000	\$13,000,000	
2036	\$11,806,000	\$1,074,000	\$12,880,000	
2037	\$11,806,000	\$1,074,000	\$12,880,000	
2038	\$11,806,000	\$1,186,000	\$12,992,000	
2039	\$11,855,000	\$1,125,000	\$12,980,000	
2040	\$11,806,000	\$2,170,000	\$13,976,000	
2041	\$14,793,000	\$4,715,000	\$19,508,000	
2042	\$14,681,000	\$4,770,000	\$19,451,000	
2043	\$13,833,000	\$4,605,000	\$18,438,000	
Total	\$396,000,000	\$51,000,000	\$447,000,000	

Report Submission

Prepared by:

KERR WOOD LEIDAL ASSOCIATES LTD.

Amir Taleghani, M.Eng., P.Eng. (GINES) Project Engineer (Dike Upgrades Cost Estimate)

Reviewed by:

Crystal Campbell, P.Eng. Technical Reviewer

Statement of Limitations

This document has been prepared by Kerr Wood Leidal Associates Ltd. (KWL) for the exclusive use and benefit of the City of Abbotsford for the Drainage Master Plan. No other party is entitled to rely on any of the conclusions, data, opinions, or any other information contained in this document.

This document represents KWL's best professional judgement based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by members of the engineering profession currently practising under similar conditions. No warranty, express or implied, is made.

Copyright Notice

These materials (text, tables, figures and drawings included herein) are copyright of Kerr Wood Leidal Associates Ltd. (KWL). The City of Abbotsford is permitted to reproduce the materials for archiving and for distribution to third parties only as required to conduct business specifically relating to Drainage Master Plan. Any other use of these materials without the written permission of KWL is prohibited.

Revision History


Revision #	Date	Status	Revision	Author
0	June 6, 2018	Final	Issued as final	EL/DZ
A	May 11, 2018	Draft		EL/DZ

DRAINAGE MASTER PLAN

KWL File No. 0510.152-300

Colwyn Sunderland, AScT Capital Project and DCC Specialist

David Zabil, M.A.Sc., P.Eng.

Technical Lead

This document is a copy of the sealed and signed hard copy original retained on file. The content of the electronically transmitted document can be confirmed by referring to the filed original.

Appendix A

List of Background Reports

Table A1: List of Available Reports

Year	Item No.	Title	Received
redi	item No.	Title	Received
Upland Dra	inage Modellin	ng Related	
2017	N/A	Willband Creek ISMP_Part 1&2 Report (Draft)	\checkmark
2012	12-05	Clayburn Creek ISMP	√
2011	11-04	City Wide Drainage Modelling and Capital Planning	\checkmark
2010	10-01	Downes Creek ISMP	\checkmark
2007	07-03	Review of 100-Year Demining & Cross-border Flows Provided by US in 2007	\checkmark
2006	06-01	Marshall Creek ISMP	\checkmark
2006	06-02	King Road Drainage Study	
1996		Infrastructure Study of Old Abbotsford Downtown Area (Vol1)	
1996		Infrastructure Study of Old Abbotsford Downtown Area (Vol2)	
1987	87-01	Fishtrap Creek - Master Drainage Plan	√
Lowland D	rainage/Flood I	Modelling Related	
2015		Sumas Prairie Drainage Study Part I	\checkmark
2014	14-01	Sumas Mike Flood Model Refinement	\checkmark
2014	14-05	Sumas Prairie Design Flood Simulation & Impact Mitigation (Ph 1 Project Summary)	\checkmark
2014	14-09	Fraser River Design Flood Level Update - Hope to Mission	\checkmark
2014	14-10	Lower Mainland Flood Management Strategy - Phase 1 -	\checkmark
2013	13-04	Project 1: Simulating the Effects of Sea Level Rise & Climate Change on Fraser River Flood Scenarios Matsqui Prairie Drainage Study - Phase 1	\checkmark
2013	12-08	Prairie Street Flood Prevention Works Compensation Planning and Assessment	 ✓
2012	12-00	Flood Emergency Model Preparation for Sumas Prairie	 ✓
2012	05-03	Sumas Prairie Flood Hazard Investigation, 1990 Flood Calibration (2005)	 ✓
2003	03-01	Sumas Prairie Flood Hazard Investigation Interim Report 2003	 √
2003	01-02	Sumas River Flood Study - Farm Survey	 √
2001	01-03	Flood and erosion Assessment of Horn Creek / Boa Brook	 ✓
2001	01-04	Comprehensive Management for Flood Protection Works	 ✓
1998	98-02A	The Sumas River Flood Routing Study - Interim Report (Vol 1)	 ✓
1998	98-02B	The Sumas River Flood Routing Study - Interim Report (Vol 2)	 √
1998	98-02C	The Sumas River Flood Routing Study - Interim Report (Vol 3)	√
1996	96-01	Flood Protection Dykes and Environmental Concerns	√
1993	93-01	Matsqui Slough Drainage Study	\checkmark
1989	89-02	Engineering Studies for Floodplain Management Plan	\checkmark
1988	88-01	ARDSA 22007 - Matsqui Prairie Drainage and Irrigation Feasibility Study	√
1988	88-02	Matsqui Prairie Drainage and Irrigation District Economic Analysis	\checkmark
Pump Stati	on Related	· · · · · · · · · · · · · · · · · · ·	
2011	11-01	Barrowtown Pump Station End Use Assessment	√
2011	11-05	Barrowtown PS - Preliminary Pumping Study: Throttling to Increase Capacity when Pumping from Sumas	/
		River	√
2010	10-03	Matsqui Slough & McLennan Creek Drainage PSs - End Use Assessment Rpt	√
2009	09-04	Proposed Road - Barrowtown Pump Station	√
2008	08-05	Drainage Pump Station PSAB 3150 Study	√
1993	Misc01	A Guide to the Barrowtown Pump Station and Sumas Prairie Floodplain	✓ ✓
1992	92-01	Matsqui Slough and Mclennan Creek Drainage Pump Stations Operating and Maintenance Manual	<u></u>
1991	91-02	Matsqui Prairie Drainage and Irrigation Project - Drainage System Maintenance and Operation Manual	✓
	nprovement Re		-
2015	15-04	Waechter Creek at Simpson Rd Extension Culvert Replacement Completion Report	\checkmark
1985		Sumas River Improvements	
		& Sediment Traps Related	
2016	16-02	Risk of Erosion at Matsqui Dyke from Erosion Arcs F and G	√
2016	16-06	No. 4 Road Ditch Erosional Assessment	✓ ✓
2016	16-12	Proposed Bank Protection: Erosion Arc F(b) Completion	<u></u>
2015	15-02	Prairie Street Creek - Watercourse and Erosional Source Assessment	✓ ✓
2015	15-05	Fraser River at Matsqui - Erosion Study and Development of Mitigation Concepts	✓ ✓
2014	14-02	Ridgedale Erosion Arc (Contract No. 2014-02)	<u> </u>
2014	14-08	Gill Creek Watercourse and Erosional Source Assessment	<u>√</u>
2013	13-10	Beharrel Bank Stabilization - Design Brief	<u> </u>
2012	12-09	Shamrock Creek Scour Mitigation	<u>√</u>
2010 2010	10-05A 10-05B	Fraser River Bank Erosion - Matsqui Trail Regional Park (Final Report) Fraser River Bank Erosion - Matsqui Trail Regional Park (Final Report - Addendum)	<u>√</u>
2010	09-02	Bank Stabilization Marshall Creek and Horn Creek Erosion Sites - Phase II and III	√
2009	09-02	Bank Stabilization Marshall Creek and Horn Creek Erosion Sites - Phase II and III Bank Stabilization Marshall Creek and Horn Creek Erosion Sites - Phase I	√
1987	87-02	Lonzo Creek Erosion between Beck Rd. & Cyril St.	 ↓
2009	09-06	Sumas River Sediment Trap at International Boundary	✓ ✓
2009	03-00		v

Year	Item No.	Title	Received
Infiltration	Detention Rela	ited	
2014	14-04	CICP Infiltration Gallery - Well Monitoring and Infiltration Testing (2014)	√
2013	13-08	Broadway St from Bevan Ave to 200 m North Abbotsford, Infiltration Assessment Report	√
2013	13-11	CICP Infiltration Gallery - Well Monitoring and Infiltration Testing (2013)	√
2012	12-13	Clearbrook & Marshall Infiltration Gallery - Final Design Report	
2011	11-02	Design and Modelling for the Walnut Avenue Detention Facility Expansion	√
2011	11-03	2010 Underground Concrete Stormwater Detention Tank Inspections	√
2011	11-06	Willband Creek Detention Expansion	√
2011	11-08	Underground Concrete Stormwater Detention Tank Inspections	√
2009	09-03	Underground Concrete Stormwater Tank Inspections (2009)	√
2008	08-03	Vicarro Ranch Community Detention Ponds - Assessment of Downstream Impacts	√
2005	05-02	Feasibility Evaluation of SW Source Control Strategies for Vicarro Ranch Dev. Area	√
Land Use F	Related		
2015	15-06	Abbotsford OCP Update Stormwater Assessment	√
Municipal	SW Program R	elated	
2013	13-06	Clayburn Creek Watershed - Rainwater Management Measures	√
2013	13-09	Fishtrap Creek Hwy 1 Storm Detention Structure (Standard Operating Procedures)	√
2009	09-05	CICP Lands Stormwater Source Control Bylaw	√
1998	98-01	Surrey/Abbotsford/Kamloops Assessing Applicability of Stormwater Utility to Local	√
1990	90-02	Involvement of Public Works Dpmt in Flood of West Sumas Prairie Nov 10-13, 1990	√

Appendix B

Proposed Drainage Projects

Table B1: Summary of Proposed Projects from Previous Studies

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Sumas Prairie Drainage Study - Phase 1, 2017				
Vegetation Removal				
Marshall Crk	SUMAS_1	36000 BLOCK & NORTH PARALLEL RD		
Saar Crk	SUMAS_2	1300 BLOCK & WHATCOM RD		Not Included.
Sumas River	SUMAS_3	LAMSON RD		Operational Program
Arnold Slough	SUMAS_4	1300 BLOCK & COLE RD		
Hydraulic Upgrades	•		•	
Culvert at Vye Rd on Saar Crk	SUMAS_5	VYE RD	\$845,600	2025
Culvert at Old Yale Rd on Arnold Slough	SUMAS_6	38000 BLOCK & OLD YALE RD	\$432,500	2041
Risk of Erosion at Matsqui Dyke from Erosion Arcs F	& G, 2016		•	
Erosion Stabilization Emergency Works				
Design, Permitting, and Assisting with Tendering	FRASER_2		\$88,932	
Construction Monitoring and Supervision	FRASER_2		\$120,558	
Construction Costs	FRASER_2		\$1,619,251	2025-2032
Freshet Monitoring	FRASER_2		\$41,011	
Prairie Street Creek Watercourse & Erosional Source	Assessment, 2015			
Flow Reduction				
Stabilize Erosion Bank & Widen Channel				
Area 1, Waypoint 2	PRAIRIE 1	32000 BLOCK & DOWNES RD		
Area 2, Waypoint 6	PRAIRIE 2	32000 BLOCK & DOWNES RD		
Area 3, Waypoint 7	PRAIRIE 3	32000 BLOCK & DOWNES RD		
Area 4, Waypoint 11 & 12	PRAIRIE 4	32000 BLOCK & CHILCOTIN DR		City does not want to
Area 5, Waypoint 13	PRAIRIE_5	32000 BLOCK & CHILCOTIN DR		pursue at this time
Area 6, Waypoint 19	PRAIRIE 6	4000 BLOCK & PRAIRIE ST		
Construct Weirs & Step Pools d/s of Pedestrian Bridge				
Sediment Management				
Create Trap @ Prairie Street Culvert	PRAIRIE_11	32000 BLOCK & DOWNES RD		
Increase Size - Downes Rd Sediment Trap	PRAIRIE 9	32000 BLOCK & DOWNES RD	\$36,000	2018
Remove Sediment Reach 2	PRAIRIE_10	4000 BLOCK & PRAIRIE ST		Not Included. Operational Program
Remove Debris Jams	ł		1 1	·
Reach 1 Waypoint 3 & 8	PRAIRIE_7	32000 BLOCK & DOWNES RD		Not Included.
Reach 2, Waypoint 23	PRAIRIE_8	4000 BLOCK & PRAIRIE ST		Operational Program
Fraser River at Matsqui - Erosion Study & Developme	nt of Mitigation Conc	epts, 2015		
Erosion Stabilization				
Erosion Stabilization	FRASER_3			2018-2022 10M received from the Province
Gill Creek Watercourse and Erosional Source Assess	ment. 2014			
Construct Sediment Trap & Diversion @ Waypoint 1	GILL_1	2100 BLOCK & SUMAS WAY		
Construct Detention Facility @ Waypoint 5	GILL_2	MIRUS DR	-	
Widen Watercourse & armour bank @ Waypoint 6 & 8	GILL_3	MIRUS DR	-	
Extend Pipes down bank to watercourse @ Waypoint 7	GILL_4	MIRUS DR	\$750,000	2019-2021
Construct Bank Stabilization @ Waypoint 10, 11	GILL_5	MIRUS DR	÷, 00,000	-
Pipe watercourse through Erosive Section @ Waypoint 13	GILL_6	MIRUS DR	-	
Remove Debris Jam / Modify Weir @ Waypoint 14	GILL_0	MIRUS DR	-	
Beharrel Bank Stabilization - Design Brief, 2013				
				Completed
Beharrel Bank (no costing)		1		Completed

Table B1 - 1 of 10 DRAINAGE MASTER PLAN

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Matsqui Prairie Drainage Study, 2013				
Clayburn Village Flood Protection				
Clayburn Village Drainage				
Install Floodboxes	MATSQUI_1	4200 BLOCK & WRIGHT ST	¢160 510	2020
Install Flap gates	MATSQUI_2	4300 BLOCK & WRIGHT ST	\$162,510	2020
Construct 100L/s Pump Station	MATSQUI_3	4300 BLOCK & WRIGHT ST	\$572,455	2024
Clayburn Creek Berms				
Construct North Berm Ch. 12036-12629	MATSQUI_6	4200 BLOCK & WRIGHT ST		
Construct North Berm Ch. 12710-12930, 0.5 m High Berms	MATSQUI_6	4200 BLOCK & WRIGHT ST	\$300,000	2020
Construct South Berm Ch. 12036-12200	MATSQUI 7	4200 BLOCK & WRIGHT ST		
Upgrade Existing Temporary Berms (North and South)	 MATSQUI 7	4200 BLOCK & WRIGHT ST	\$248,483	completed
Matsqui Prairie Drainage Study, 2013	_			
Clayburn Creek Conveyance Upgrades				
Channel Enlargement / Deepening - Backwatered Section				
Ch. 14284-14212	MATSQUI 8	CLAYBURN RD		onging - 2020
Ch. 14202-13825	MATSQUI 8	CLAYBURN RD	\$365,910	oligilig - 2020
Ch. 13815-13333	MATSQUI 8	CLAYBURN RD		
Channel Enlargement / Deepening - Non-Backwatered Section	Mirtiogol_o			
Ch. 13323-13300		CLAYBURN RD	_	
	MATSQUI_9		\$707,705	2022
Ch. 13282-13086	MATSQUI_9		\$707,705	2022
Ch. 13076-12727	MATSQUI_9	CLAYBURN RD	_	
Ch. 12710-12574	MATSQUI_9	CLAYBURN RD		
Bridge Upgrades			\$225,417	2029
Farm Bridge Upgrade	MATSQUI_4	CLAYBURN RD		
Wright St Bridge Raising	MATSQUI_5	4200 BLOCK & WRIGHT ST		
Wright St Raising	MATSQUI_5	4200 BLOCK & WRIGHT ST		Completed
Driveway Raising	MATSQUI_5	4200 BLOCK & WRIGHT ST		
Signage, moving pipes, railing	MATSQUI_5	4200 BLOCK & WRIGHT ST		
Matsqui Slough Conveyance Upgrades				
Matsqui Upgrades				
Deepen Under Clayburn Bridge	MATSQUI_10	34000 BLOCK & CLAYBURN RD	\$55,568	2020
Ch. 14284-14884	MATSQUI_10	34000 BLOCK & CLAYBURN RD		
Sediment Management				
Sediment Management				Addressed in Clayburn
Expand and Improve Existing Sediment Traps				ISMP List
Clayburn ISMP, 2012				
PRIORITY 1 - Upgrade to Provide Major Drainage Route				
	K_CV140	4600 BLOCK & SUMAS MOUNTAIN RD	\$254,700	2019
	K_CV193	WILLET RD	\$387,600	2021
	K_CV221	4700 BLOCK & WILLET RD	\$413,600	2021
	K_CV2	35000 BLOCK & CASSIAR AVE	\$564,200	2022
	K_CV48	35000 BLOCK & MCKEE RD	\$136,300	2023
O that	K_CV52	MCKEE RD	\$604,300	2024
Culvert	K_CV211	4600 BLOCK & SUMAS MOUNTAIN RD	\$202,300	2024
	 K_CV116	4300 BLOCK & BLAUSON BLVD	\$315,400	2025
	 K_CV224	3500 BLOCK & OLD CLAYBURN RD	\$264,000	2025
	K CV46	35000 BLOCK & MCKEE RD	\$329,300	2026
	K_CV133	4700 BLOCK & WILLET RD	\$158,500	2026
	K_CV135	4700 BLOCK & WILLET RD	\$199,600	2030
Bridge	K_CV76	35000 BLOCK & STRAITON RD	\$851,100	2030
Dirago			φυστ, 100	2013

Table B1 - 2 of 10 DRAINAGE MASTER PLAN

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Clayburn ISMP, 2012				
PRIORITY 1 - Upgrade to Provide Major Drainage Route				
	K_860E11	3500 BLOCK & BASSANO TERRACE	\$67,800	2019
	K_527E11	35000 BLOCK & SANDY HILL RD	\$96,700	2020
torm Sewer	K_525E11	35000 BLOCK & SANDY HILL RD	\$68,100	2025
	K_517E11	35000 BLOCK & SANDY HILL RD	\$248,700	2026
	K_526E11	35000 BLOCK & SANDY HILL RD	\$4,900	2026
PRIORITY 2 - Minor Flow Capacity - Multi-Diameter Upgrad	e			
Culvert	K_CV89	34000 BLOCK & BATEMAN RD	\$303,000	2030
Bridge	K_CV42	34000 BLOCK & BATEMAN RD	\$130,200	2026
	K_CV60	34000 BLOCK & BATEMAN RD	\$457,500	2034
	K_517E10	3900 BLOCK & COACHSTONE WAY	\$204,800	2027
	K_943E10	34000 BLOCK & LABURNUM AVE	\$119,000	2028
	K_945E10	34000 BLOCK & LABURNUM AVE	\$35,000	2028
	K_947E10	34000 BLOCK & LABURNUM AVE	\$196,600	2028
torm Sewers	K_948E10	3400 BLOCK & WRIGHT ST	\$112,200	2028
	K_959E10	34000 BLOCK & LABURNUM AVE	\$155,000	2028
	K_967E10	34000 BLOCK & LABURNUM AVE	\$90,600	2028
	K_1407E10	3500 BLOCK & MONASHEE ST	\$91,100	2028
	K_1884E10	35000 BLOCK & EXBURY AVE	\$98,900	2028
	K_420E11	35000 BLOCK & MCKEE RD	\$133,400	2029
	K_908E11	3500 BLOCK & MCKINLEY DR	\$41,300	2029
	K_1095E10	35000 BLOCK & HIGH DR	\$152,700	2029
	K_1100E10	35000 BLOCK & HIGH DR	\$64,500	2029
	K_1309E11	3800 BLOCK & OLD CLAYBURN RD	\$43,200	2029
	K_1772E10	34000 BLOCK & HIGH DR	\$166,900	2029
	K_1938E10	35000 BLOCK & LABURNUM AVE	\$63,900	2029
	K_1941E10	35000 BLOCK & LABURNUM AVE	\$69,700	2029
	K_518E10	3900 BLOCK & COACHSTONE WAY	\$206,700	2030
	K_5F12	36000 BLOCK & STEPHEN LEACOCK DR	\$60,400	2031
	K_6F12	36000 BLOCK & STEPHEN LEACOCK DR	\$94,200	2031
	K_111E12	36000 BLOCK & MCKEE RD	\$34,200	2031
	K_370F12	4400 BLOCK & BLAUSON BLVD	\$22,700	2031
	K_386F12	4400 BLOCK & BLAUSON BLVD	\$32,600	2031
	K_388F12	4400 BLOCK & BLAUSON BLVD	\$97,300	2031
	K_511E10	3900 BLOCK & COACHSTONE WAY	\$149,800	2031
torm Sewers	K_1262F10	4000 BLOCK & OLD CLAYBURN RD	\$97,700	2031
	 K_1408E10	35000 BLOCK & SKEENA AVE	\$66,400	2031
	 K_1416E10	3500 BLOCK & MONASHEE ST	\$66,300	2031
	 K_1710E11	3400 BLOCK & WHATCOM RD	\$80,800	2031
	 K_1713E11	3400 BLOCK & WHATCOM RD	\$25,400	2031
	 K_1885E10	35000 BLOCK & EXBURY AVE	\$84,900	2031
	K_2342F10	35000 BLOCK & STRAITON RD	\$66,000	2031
	 K_2358F10	35000 BLOCK & STRAITON RD	\$46,800	2031
	K_374F12	4400 BLOCK & BLAUSON BLVD	\$46,500	2032
	 K_927E10	34000 BLOCK & ASCOTT AVE	\$108,000	2032
	K_929E10	3400 BLOCK & SUSSEX ST	\$96,000	2032
	K 930E10	34000 BLOCK & LABURNUM AVE	\$81,600	2032
	K_940E10	34000 BLOCK & IMMEL ST	\$103,900	2032
	K_1141F11	4300 BLOCK & SHEARWATER DR	\$61,200	2032
	K_519E10	3900 BLOCK & COACHSTONE WAY	\$196,200	2032
		34000 BLOCK & HIGH DR	\$33,400	2033

Table B1 - 3 of 10 DRAINAGE MASTER PLAN

CITY OF ABBOTSFORD Drainage Master Plan Final Report June 2018

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Clayburn ISMP, 2012				
PRIORITY 2 - Minor Flow Capacity - Multi-Diameter Upgra	ade			
	K_1648E11	35000 BLOCK & ANGUS CR	\$59,100	2033
	K_946E10	34000 BLOCK & LABURNUM AVE	\$64,600	2034
	K_1312E11	3800 BLOCK & OLD CLAYBURN RD	\$164,500	2034
	K_4F12	36000 BLOCK & STEPHEN LEACOCK DR	\$32,200	2034
	K_2351F10	35000 BLOCK & STRAITON RD	\$50,300	2034
	K_2349F10	35000 BLOCK & STRAITON RD	\$52,900	2034
	K_2350F10	35000 BLOCK & STRAITON RD	\$100,400	2034
	K_520E10	3900 BLOCK & COACHSTONE WAY	\$165,300	2035
	K_901E11	35000 BLOCK & MCKEE RD	\$100,100	2035
	K_975E10	34000 BLOCK & TERRACE CT	\$109,900	2035
	K_980E10	34000 BLOCK & TERRACE CT	\$96,600	2035
	K_1266F10	34000 BLOCK & CLAYBURN RD	\$61,400	2035
	K_1267F10	34000 BLOCK & CLAYBURN RD	\$64,200	2035
	K_1269F10	34000 BLOCK & CLAYBURN RD	\$69,300	2035
	K_1271F10	34000 BLOCK & CLAYBURN RD	\$127,200	2035
	K_400E11	3200 BLOCK & MCKINLEY DR	\$58,200	2037
	K_1010F10	34000 BLOCK & BATEMAN RD	\$186,200	2037
torm sewers	K_1306E11	3800 BLOCK & OLD CLAYBURN RD	\$27,700	2037
	K_514E10	3900 BLOCK & COACHSTONE WAY	\$81,600	2038
	K 1709E11	3400 BLOCK & WHATCOM RD	\$123,600	2038
	 K_1270F10	34000 BLOCK & CLAYBURN RD	\$62,300	2038
	 K_72F12	4400 BLOCK & BLAUSON BLVD	\$31,300	2039
	– K 371F12	4400 BLOCK & BLAUSON BLVD	\$71,700	2039
	K 684F12	4400 BLOCK & BLAUSON BLVD	\$19,900	2039
	K 907E11	35000 BLOCK & MCKEE RD	\$35,300	2039
	K 1036F10	34000 BLOCK & CLAYBURN RD	\$63,100	2039
	K 1092E10	34000 BLOCK & HIGH DR	\$55,700	2039
	K 1140F11	4300 BLOCK & SHEARWATER DR	\$55,900	2039
	K 1268F10	4300 BLOCK & WRIGHT ST	\$36,200	2039
	K 1272F10	34000 BLOCK & CLAYBURN RD	\$96,000	2039
	K 1307E11	3800 BLOCK & OLD CLAYBURN RD	\$112,900	2039
	K 1775E10	35000 BLOCK & HIGH DR	\$45,100	2039
	K 2347F10	35000 BLOCK & STRAITON RD	\$15,800	2039
	K 480E10	34000 BLOCK & BATEMAN RD	\$141,000	2040
PIOPITY 2 Minor Flow Consolity One Bine Diameter I	_		,	
RIORITY 3 - Minor Flow Capacity - One Pipe Diameter U	K 1246E11	3300 BLOCK & MCKINLEY DR	\$32,600	2038
	K_199E11	35000 BLOCK & TWEEDSMUIR DR	\$62,700	2040
	K_387E11	3200 BLOCK & PURCELL AVE	\$89,300	2040
	K_453E11	3400 BLOCK & MCKINLEY DR	\$77,100	2040
	K 1352E11	35000 BLOCK & NAKISKA CT	\$27,900	2040
	K_1068E10	35000 BLOCK & MORGAN WAY	\$167,400	2040
	K_1235F11	4000 BLOCK & CHANNEL ST	\$52,600	2041
torm Sewers	K_1361E11	3200 BLOCK & BOXWOOD CT	\$55,800	2041
	K_1843E10	35000 BLOCK & CHRISTINA PL	\$198,000	2041
	K 109E12	36000 BLOCK & MCKEE RD	\$198,000	2041
	K_109E12	35000 BLOCK & MCKINLEY PL	\$77,700	2042
	K_446E11	3400 BLOCK & MCKINLET PL	\$66,600	2042
	K_745E11	3900 BLOCK & OLD CLAYBURN RD	\$27,900	2042
	K_1060F11	35000 BLOCK & BELANGER DR	\$124,900	2042

Table B1 - 4 of 10

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Clayburn ISMP, 2012			• •	
PRIORITY 3 - Minor Flow Capacity - One Pipe Diameter Upgrade				
	K_1353E11	3200 BLOCK & BOXWOOD CT	\$72,900	2042
	K_1357E11	3300 BLOCK & BOXWOOD CT	\$77,000	2042
D4	K_1358E11	3200 BLOCK & BOXWOOD CT	\$117,200	2042
Storm sewers	K_1359E11	3200 BLOCK & BOXWOOD CT	\$107,600	2042
	K_1360E11	3200 BLOCK & BOXWOOD CT	\$42,500	2042
	K_1362E11	3300 BLOCK & BOXWOOD CT	\$45,300	2042
PRIORITY 4 - DCC Upgrades				
	K_11E11	3600 BLOCK & FOREST OAKS CT	\$101,700	
	K_13E11	3600 BLOCK & FOREST OAKS CT	\$83,500	
	K_19E11	3700 BLOCK & CASTLE PINES CT	\$40,200	
	K_33E11	3700 BLOCK & CASTLE PINES CT	\$78,600	
	K_869E11	3400 BLOCK & WHATCOM RD	\$45,000	
	K_1711E11	3400 BLOCK & WHATCOM RD	\$46,900	
	K_1009F10	34000 BLOCK & BATEMAN RD	\$123,200	
	K_7F12	36000 BLOCK & AUGUSTON PARKWAY SOUTH	\$61,100	
	K_8F12	36000 BLOCK & AUGUSTON PARKWAY SOUTH	\$99,400	
	K_989E10	34000 BLOCK & TERRACE CT	\$33,600	
	K_1340E10	3300 BLOCK & MCKEE DR	\$46,600	
	K_1370E10	3500 BLOCK & MONASHEE ST	\$146,600	
torm Sewers	K_1418E10	3600 BLOCK & BULKLEY ST	\$58,800	Time of developmen
	K_1903E10	3700 BLOCK & BULKLEY ST	\$37,500	
	K_1904E10	34000 BLOCK & MIERAU ST	\$23,400	
	K_1448E10	3700 BLOCK & OLD CLAYBURN RD	\$55,400	
	K_21E12	36000 BLOCK & BUCKINGHAM DR	\$98,800	
	K_27E12	36000 BLOCK & BUCKINGHAM DR	\$67,400	
	K_51E12	36000 BLOCK & WESTMINSTER DR	\$82,600	
	K_70E12	36000 BLOCK & WESTMINSTER DR	\$81,500	
	K_37E12	36000 BLOCK & WESTMINSTER DR	\$73,600	
	K_38E12	36000 BLOCK & WESTMINSTER DR	\$73,200	
	K_36E12	36000 BLOCK & WESTMINSTER DR	\$122,300	
	K_131E12	36000 BLOCK & BUCKINGHAM DR	\$46,600	
	K_133E12	36000 BLOCK & BUCKINGHAM DR	\$102,200	
	K_137E12	36000 BLOCK & BUCKINGHAM DR	\$38,800	
ROSION MANAGEMENT	1		<u> </u>	
			\$193,422	2021
Existing Detention Facility Modification for Erosion Management	CLAYBURN_DET1	Stoney Creek and Clayburn Creek Watershed	\$214,914	2025
			\$85,965	2035
Rehabilitate Existing Erosion Sites & Mitigate Erosive Flows			\$53,728	2033
EDIMENT MANAGEMENT			<u>т</u> т	
expand & Improve existing Dutra sediment trap	CLAYBURN_SED1	35000 BLOCK & STRAITON RD	\$80,000	2025
emove sediment under Wright St & Construct weir	CLAYBURN_SED2	4200 BLOCK & WRIGHT ST		Completed
Barrowtown PS - Preliminary Pumping Study, 2011				
Dption 1 Static Method - Head pond construction				
Dption 2 Dynamic Method - Introduction of adjustable flow restriction n discharge piping of Pump 1 & 2				
Pump Works Sub-total (for budgeting only)	BARROW_1	40000 BLOCK & QUADLING RD	\$1,750,000	2041-2043

Table B1 - 5 of 10 DRAINAGE MASTER PLAN

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Barrowtown PS - Backup Power Study, 2013				
Option A				
Option B				
Option C				
Pump Works Sub-total (for budgeting only)	BARROW_2		\$4,131,300	2041-2043
Other PS - Backup Power Construction				
McLennan PS - Backup Power	MCLENNAN_1		\$988,800	2041-2043
Matsqui PS - Backup Power	MATSQUI_1		\$1,898,100	2041-2043
DeJong PS - Backup Power	DEJONG_1		\$103,600	2041-2043
Vanderloo PS - Backup Power	VANDERLOO_1		\$88,800	2041-2043
Downes Creek ISMP, 2010Existing Land Use - 2006Fut	ure Land Use - 2015			
Pipe Works - Replacement				
In catchment D2	DOWNES_PIPE_6C	3900 BLOCK & CLEARBROOK RD	\$142,000	2022
In catchment D2	DOWNES_PIPE_6A	3900 BLOCK & CLEARBROOK RD	\$217,800	2023
In catchment D2	DOWNES_PIPE_6B	31000 BLOCK & DOWNES RD	\$112,300	2023-2024
In catchment D1	DOWNES_PIPE_1	DOWNES RD	\$600,800	2027
In catchment D1	DOWNES PIPE 3B	32000 BLOCK & CLINTON AVE	\$549,900	2032-2033
In catchment D1	DOWNES PIPE 7B	31000 BLOCK & BLUERIDGE DR	\$233.400	2034
In catchment D1	DOWNES PIPE 3C	32000 BLOCK & CLINTON AVE	\$1,099,756	2036-2037
In catchment D1	DOWNES PIPE 2A	32000 BLOCK & HAIDA DR	\$229,800	2037
In catchment D1	DOWNES PIPE 4	3300 BLOCK & SLOCAN DR	\$385,200	2037
In catchment D2	DOWNES_PIPE_7A	31000 BLOCK & DOWNES RD	\$29,300	2038
In catchment D1	DOWNES_PIPE_3A	32000 BLOCK & SORRENTO AVE	\$432,500	2038
In catchment D1	DOWNES PIPE 5	32000 BLOCK & ASTORIA CR	\$630,600	2038-2039
In catchment D1	DOWNES PIPE 7C	31000 BLOCK & PINNACLE PL	\$90,500	2040
In catchment D1	DOWNES_PIPE_2B	32000 BLOCK & HAIDA DR	\$634,700	2040-2041
Construct New Ponds		S2000 BEOOR & HAIDA BR	φ00 4 ,700	2040-2041
Pond Y				
Detention Pond	DOWNES POND 1	4000 BLOCK & CLEARBROOK RD	\$804,153	2041
25% Environmental Enhancement	DOWNES_POND_1	4000 BLOCK & CLEARBROOK RD	\$201,038	2041
Pond Z	DOWINES_FOIND_1	4000 BLOCK & CLEARBROOK RD	\$201,038	2041
Detention Pond	DOWINES DOND 2		\$2,072,460	2042-2043
	DOWNES_POND_2	32000 BLOCK & CLINTON AVE	\$3,973,460	
25% Environmental Enhancement	DOWNES_POND_2 DOWNES POND 2	32000 BLOCK & CLINTON AVE	\$993,365	2042-2043
Modify 2x manhole for flow diversion	DOWINES_POIND_2	32000 BLOCK & CLINTON AVE	\$94,606	2042-2043
Pond Inlet and Outlet Adjustments				
Pond A				0001
Inlet Control w/ emergency bypass	DOWNES_POND_3		\$47,303	2021
Outlet Control w/ emergency overflow	DOWNES_POND_3	32000 BLOCK & HAIDA DR	\$47,303	2021
Pond C				0051
Inlet Control w/ emergency bypass	DOWNES_POND_4	3600 BLOCK & CLEARBROOK RD	\$47,303	2021
Outlet Control w/ emergency overflow	DOWNES_POND_4	3600 BLOCK & CLEARBROOK RD	\$47,303	2021
Pond G				
Modify 2x manhole for flow diversion	DOWNES_POND_5	31000 BLOCK & DOWNES RD	\$94,606	2021
Inlet Control w/ emergency bypass	DOWNES_POND_5	31000 BLOCK & DOWNES RD	\$47,303	2021
Outlet Control w/ emergency overflow	DOWNES_POND_5	31000 BLOCK & DOWNES RD	\$47,303	2021
Erosion Stabilization	-1		T	
Stabilize bank erosion (8 sites)	DOWNES_ERO_6	4000 BLOCK & VERDON WAY	\$151,370	2032-2033

Table B1 - 6 of 10

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Fraser River Bank Erosion - Matsqui Trail Regional Par	k Final Report Adde	ndum, 2010		
Remove hard points & regrade banks (2H:1V).	FRASER_1			
Remove hard points & regrade banks (6H:1V).	FRASER_1			
Leave existing bank-line as is & construct rock-filled trench.	FRASER_1			
Place continuous Riprap protection along existing bank-line.	FRASER_1			Completed
Upgrade hard-points at end of each erosion arc.	FRASER_1			Completed
Dredging Sand/Gravel Bar on north side of river (annual)	FRASER_1			
Upgrade existing Riprap upstream Beharrel Rd. Access	FRASER_1			
Create Riparian Barrier & Place Log Booms in erosion arcs	FRASER_1			
Bank Stabilization Marshall Creek and Horn Creek Eros	sion Sites Phase II ar	nd III, 2009		
Horn Creek Bank Stabilization (Direct Costs)				
Site A	HORN_A_1	NELSON PL	\$299,767	
Site B	HORN_B_2	TRAFALGAR ST	\$495,402	on-going
Site D	HORN_D_7	TRAFALGAR ST	\$752,071	
Site H	HORN_H_5	TRAFALGAR ST	\$465,338	2021-2024
Site I	HORN_I_6	MACLURE RD	\$81,772	2021-2024
Site E	HORN_E_4	TRAFALGAR ST	\$358,890	2021-2024
Site F	N/A			monitoring site
Site G	N/A			monitoring site
Horn Creek Stormwater Diversion	•	•		
General (Mobilisation, Demobilisation)	HORN_1	32000 BLOCK & MACLURE RD	\$96,543	2043
Site Works	HORN_1	32000 BLOCK & MACLURE RD	\$5,435,381	2043
Sumas River Sediment Trap at International Boundary,	2009			
Sediment Trap (3:1 slope)				Not Pursued
Design and Modelling for the Walnut Ave Detention Fa	cility Expansion, 201	1		
Aquatic Marsh - Proposed Design (not costed)	WALNUT_1	34000 BLOCK & WALNUT AVE		Completed
Willband Creek Detention Expansion, 2011				
Excavating the existing ponds (mainly sides) with 1:5 side slope, placing the spoil earth on the banks with 1:5 side slopes and maximum fill height elevation of + 5.0 m. Grass seeding of the newly exposed daylight areas of the ponds and	WILLBAND_1		_	Completed
over the spoil earth piles.	_			
Marshall Creek ISMP, 2006				
Proposed Storm Sewer Improvements				
5-Year Capital Plan - Major Drainage System Improvements				
Delair Rd at Walker Cr	MARSHALL_1	34000 BLOCK & DELAIR RD	\$106,500	2023
Delair Rd at Sumas Way	MARSHALL_2	1900 BLOCK & SUMAS WAY	\$228,700	2032
5-Year Capital Plan - Minor Drainage System Improvements				
Rona parking lot	MARSHALL_4	1200 BLOCK & SUMAS WAY	\$226,100	2027
Industrial Ave at Riverside Rd	MARSHALL_3	34000 BLOCK & INDUSTRIAL WAY	\$93,300	2028
Keats St & Keats Cr to Shelley Ave & Highview St	MARSHALL_5	33000 BLOCK & SHELLEY AVE	\$393,400	2030
Highview St: Shelley Ave to King Rd	MARSHALL_6	1600 BLOCK & HIGHVIEW ST	\$212,500	2030
King Rd: Highview St to Kempley Cr	MARSHALL_7	33000 BLOCK & KING RD	\$177,100	2033
King Rd: Kempley Ct to Franklin Ave	MARSHALL_8	33000 BLOCK & KING RD	\$140,100	2034
5-Year + Minor Drainage System Improvements				
South of McClary Ave	MARSHALL_9	34000 BLOCK & MCCLARY AVE	\$82,700	2038
East side of CNR R/W north of Vye Rd	MARSHALL_10	800 BLOCK & RIVERSIDE RD	\$74,300	2038
East side of CNR R/W north of Vye Rd	MARSHALL_11	1000 BLOCK & RIVERSIDE RD	\$106,500	2040

Table B1 - 7 of 10

CITY OF ABBOTSFORD Drainage Master Plan Final Report June 2018

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Marshall Creek ISMP, 2006				
Proposed Storm Sewer Improvements				
DCC Major Drainage System Improvements				
McCallum Rd south of McConnell Rd	MARSHALL_12	1000 BLOCK & MCCALLUM RD	\$34,200	Time of development
East of McCallum Rd south of McConnell Rd	MARSHALL_13	1000 BLOCK & MCCALLUM RD		Completed
Old Yale Rd east of Delair Rd	MARSHALL_14	35000 BLOCK & OLD YALE RD	\$397,800	
Old Yale Rd at Delair Park	MARSHALL_15	35000 BLOCK & OLD YALE RD	\$311,300	Time of development
Old Yale Rd at Delair Rd	MARSHALL_16	35000 BLOCK & OLD YALE RD	\$71,400	
DCC Minor Drainage System Improvements				
North side of Industrial Ave	MARSHALL_17	34000 BLOCK & INDUSTRIAL WAY	\$153,700	
Easement between 7th Ave and Farmer Rd	MARSHALL_18	4TH AVE	\$269,100	
King Rd east of Kempley Ct	MARSHALL_19	33000 BLOCK & KING RD	\$100,900	T
King Rd east of Kempley Ct	MARSHALL_20	33000 BLOCK & KING RD	\$116,000	Time of development
Old Yale Rd at Delair Rd	MARSHALL_21	35000 BLOCK & OLD YALE RD	\$81,400	
Eagle Mountain Dr near Doneagle Pl	MARSHALL_22	35000 BLOCK & EAGLE MTN DR	\$58,700	
Proposed Culvert Improvements	4	•		
5-Year Capital Plan - Major Culvert Improvements				
East side of CNR R/W at S. Fraser Way	MARSHALL C7	34000 BLOCK & GLADYS AVE	\$322,600	2019
Riverside Rd south of Vye Rd	MARSHALL C9	700 BLOCK & RIVERSIDE RD	\$419,400	2019
34300 blk. Farmer Rd	MARSHALL C1	300 BLOCK & RIVERSIDE RD	\$133,400	2020
300 blk. Sumas Way (West Side)	MARSHALL C2	300 BLOCK & SUMAS WAY	\$213,100	2020
300 blk. Sumas Way (West Side)	MARSHALL C3	200 BLOCK & SUMAS WAY	\$216,100	2020
Private property on 800 blk. McCallum Rd	MARSHALL C4	800 BLOCK & MCCALLUM RD	\$178,000	2020
Vye Rd at CNR R/W (West Side)	MARSHALL C5	34000 BLOCK & VYE RD	\$222,100	2021
1200 blk. Riverside Rd	MARSHALL C11	34000 BLOCK & VYE RD	\$189,400	2021
SRY R/W north of S. Fraser Way	MARSHALL C6	34000 BLOCK & GLADYS AVE	\$470,100	2022
1100 blk. Riverside Rd	MARSHALL C12	34000 BLOCK & VYE RD	\$121,800	2023
Dahl Park near Forrest Cr	MARSHALL C8	FORREST TERRACE	\$440,700	2024
1300 blk. Riverside Rd	MARSHALL C10	RIVERSIDE RD	\$179,300	2026
DCC Culvert Improvement Projects			\$110,000	2020
East side of SRY R/W at Hwy 1	MARSHALL C13	SUMAS WAY	\$786,800	
200 blk. Walnut Ave	MARSHALL C14	200 BLOCK & WALNUT ST	\$339,600	
800 blk. Riverside Rd	MARSHALL C15	34000 BLOCK & VYE RD	\$360,600	Time of development
1000 blk. Riverside Rd	MARSHALL_C16	34000 BLOCK & VYE RD	\$380,200	
East side of CNR R/W at Riverside Rd	MARSHALL_C10	WEST RAILWAY ST	\$116,100	
	MARSHALL_CT	WEST IVALEWAT ST	\$110,100	
High Priority Erosion Sites Rehabilitation Marshall Site 1		MIRUS DR	\$48,272	2024
Marshall Site 1 Marshall Site 2	MARSHALL_T11_208 MARSHALL T11 212			2024 2025
		2200 BLOCK & LUMAR PL	\$24,136	
Marshall Site 4	MARSHALL_T7_185	36000 BLOCK & LOWER SUMAS MTN RD	\$24,136	2025
Marshall Site 3	MARSHALL_T7_183	36000 BLOCK & CARRINGTON LANE	\$36,204	2032
Flood and Erosion Assessment of Horn Creek/Boa Br	ook, 2001 - Alternativ			Completed
As is				Completed
Raise Yards of Kinsmen Area				Completed
Initiate Bioengineering Upstream Stabilization / Planting			\$11,121	2032
Debris Trash Rack			A	Completed
Sediment Trap / Basin	HORN_BOA_1	MACLURE RD	\$77,848	2032
Widen and Re-grade Channel	-			Completed
Flood Protection Berm / Dike	-			Completed
Channel Armouring				Completed
Channelized Side-Stream				Completed
Wattle Bundle Armouring				Completed
Protect Stormwater Outfalls				Completed

Table B1 - 8 of 10 DRAINAGE MASTER PLAN

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Fishtrap Master Drainage Plan, 1987				
Hwy 401 Detention Storage and Culvert Improvements				
Excavation				
Cultivate, lime, seed				
Control Structure				
Hwy 401 culvert upgrade				
Area 3 repiping				Do not undertake until Fishtrap ISMP is completed
Livingston, Old Yale and Towline protective work				
Paving at control structure				
Fencing and signing				
Rock work				
TOTAL	FISH_1		\$1,076,159	
Simpson Road Detention Storage and Culvert Improvement				
Control Structure				
Box culver and end well				
Rock work			1	
Simpson Road drain reconstruction	[1	
Fencing and signing			1	Do not undertake until Fishtrap ISMP is completed
TOTAL	FISH_2		\$223,957	FISHITAD ISIMP IS COMPLETED
Mt. Lehman and Marshall Culvert Improvement				
Marshall Road Culvert Headwall improvements	<u> </u>			
Culvert Installation	FISH 3	1900 BLOCK & MT LEHMAN RD	\$84,348	
Creek Clearing	FISH 4	1700 BLOCK & PEARDONVILLE RD	\$113,433	
Known Drainage Issues			\$110, 4 00	
Gill Creek Culvert Headwall Rehabilitation			\$685,000	2019
Mill Lake Flooding (Willband Creek Watershed)			\$000,000	
Storm Sewers Surcharge/Basement Flooding due to High Lake Le	vel		-	
Bank Erosion at Ravine Park (Willband Creek Watershed)			-	
Steep Eroding Bank adjacent to Trail				
End of Life Culvert at Arbour Park (Willband Creek Watershed)			+	
1800 mm CSP Culvert Coming to End of Useful Life				
Poor Condition Critical Storm Infrastructure under Railway (Willband C	rook Watarahad)		+	
near the east end of Pine St.				
Potential Detention (Willband Creek Watershed)				Willband ISMP to address
Low lying farm land too wet SE of Valley Rd			I	
Willband Creek Flooding at Willband Creek Park (Willband Creek Wat				
Trail Flooding 100 m east of Abbotsford Mission Hwy, weir need re	spair			
Willband Creek Park wetland area (Willband Creek Watershed)			!	
Sized for smaller event in isolation of MP flood event				
Rockpit Drain Well Replacement (Willband Creek Watershed)				
at Old Clayburn Neighbourhood (Hurst Crescent)				
Runoff Erosion on Trail (Willband Creek Watershed)				
Thiessen Creek at Old Riverside Park			<u> </u>	
Lack of Detailed Design + Requirements in Development Bylaw. Need	a Plan for Infill Developr	nent (Curb/gutter, on-site drainage) (Marshall Creek W	atershed)	Source control bylaw to address
bylaw additions				iu audiess
Waechter Creek Flooding in the Past (Fishtrap Creek Watershed)				Fishtrap ISMP to address
			1	1
at Marshall Road Extension				
at Marshall Road Extension East Fishtrap Creek Culvert Not Functioning Property (Fishtrap Creek	Natershed)			
	Natershed)			Fishtrap ISMP to address
East Fishtrap Creek Culvert Not Functioning Property (Fishtrap Creek				Fishtrap ISMP to address

Table B1 - 9 of 10 DRAINAGE MASTER PLAN

CITY OF ABBOTSFORD Drainage Master Plan Final Report June 2018

Project Description	Project ID *	Project Location	2017 Final Costs	Project Timeline / Comments
Known Drainage Issues				
Low Land Flooding (Marshall Creek Watershed)				S/S by Sumas Prairie
Ditch at Angus Campbell Road				Drainage Study Phase 1
Low Land Flooding (Willband Creek Watershed)				Willband ISMP to address
Hwy property at Hwy 11 and Gladys Ave crossing				
Tweedsmuir Detention Pond Not Functioning Well (Clayburn Watershe	ed)			Addressed in Clayburn
casing wet back yard near Westview Blvd				ISMP
Culvert Failure lead to Road Closure and Bank Failure (Sumas Waters	shed)			Completed
Kilgard Creek tributary near (lower) Suman Mountain Rd				
Willband Creek Culvert at Abbotsford Mission Hwy Crossing Floated (Willband Creek Watershee	1)		
after Hwy widening on the east side of the why				Willband ISMP to address
Trail and Old Transfer Station Flooding (Willband Creek Watershed)				
near Willband Creek north of Valley Rd				
Townshipline Rd East of Bates Road flooding (Mastsqui Watershed)				
Partial road flooding in the past in the ditch/tributary of McLennan	Creek			Matsqui Phase 2 study to
Past Flooding at Olund Road (Mastsqui Watershed)				address
Flooding in the past in the tributary/ditch of Hawkins Brook				
Study Project List			<u>.</u>	
DCC Bylaw Update - Storm Drainage			\$30,000	2017/2018
Subdivision Development Bylaw Update - Phase 1			\$25,000	2017/2018
City Centre Servicing Study			\$50,000	2017/2018
Historical Downtown Servicing Study - Drainage			\$50,000	2017/2018
Auguston Servicing Study - Drainage			\$50,000	2017/2018
Ledgeview Servicing Study - Drainage			\$12,500	2017/2018
McKee Peak Servicing Study - Drainage			\$50,000	2017/2018
Fishtrap Creek ISMP			\$383,000	2017/2018
Subdivision Development Bylaw Update - Phase 2			\$20,000	2019
Infill Development Stragety			\$20,000	2019
Matsqui Phase 2 Study			\$458,000	2019
Sumas Prairie Drainage Study Phase 2			\$200,000	2020
Stormwater Fee and Charges Feasibility Study			\$200,000	2020
Pepin Brook Flooding (Bertrand Creek Watershed)			\$20,000	2020
Howes Creek tributary flooding (Bertrand Creek Watershed)			\$20,000	2020
Downes Creek Tributary Lowland Flooding			\$20,000	2020
Storm main full near Blueridge Dr (Downes Creek and Fishtrap Creek	border)		\$20,000	2020
Potential Community Detention U/S of Horn Creek and Boa Brook eros	ion sites		\$20,000	2020
Stormwater Source Control Bylaw Update			\$30,000	2021
Fishtrap Creek Detention, Simpson Ave			\$135,000	2021
Fishtrap Creek Drainage			\$27,000	2021
Delair Park Community Detention Study			\$167,000	2021
Nathan Creek ISMP Study			\$350,000	2022
Pump Stations Resiliency Study			\$100,000	2024
DMP Updates (once every 5 years)			\$200,000	2024, 2029,2034,2039
Barrowtown Pump Station Upgrade Cost Benefit Study			\$50,000	2026
Dike Upgrade Detailed Cost by Phase			\$30,000	2027

Table B1 - 10 of 10

Appendix C

Estimation of Project Cost for Studied Areas

	20	05	<u>, p </u>	2016
TIA%	Land Use Code	OCP Land Type	TIA%	OCP Land Type
5	A	Agriculture	20	Agriculture
90	С	Commercial	90	Regional Commercial
90	C	Commercial	90	Neighborhood Centre
90	СС	City Contro	90	City Centre
90		City Centre	90	Urban Centre
80	CR	City Residential	80	Urban 1 – Midrise
00	CK	City Residential	80	Urban 2 - Ground
90	CU	Choice of Use	90	Secondary Commercial
			90	Hospital
90	I	Institutional	90	Institutional
			90	Institutional Complex
75	IB	Industrial Business	90	High Impact Industrial
75	IB CICP	IB on CICP Land	90	General Industrial
15			75	Airport
75	IR	Industrial Land Reserve	75	Special Study Area
40	LDR	Low Density Residential	60	Urban 4 - Detached
10	R	Rural Residential	10	Rural
1	RC Resource Conservation		1	Open Space
50	SR	Suburban Residential Zone	40	Suburban
50	OIX		10	Country
60	UR	Urban Residential	60	Urban 3 – Infill
00			40	Urban Large Lot

Table C1: Percentage TIA Assumed for Each Land Use Type

Final approved June 22, 2017

Table C1-1 of 1 DRAINAGE MASTER PLAN

Year	Construction Cost Index	Annual % CCI Change	Inflation Cost Increase	
2017	10698.72	0.7	0%	
2016	10622.73	2.2	1%	
2015	10398.13	0.1	3%	
2014	10384.58	1.8	3%	
2013	10204.3	2.5	5%	
2012	9956.3	0.1	7%	
2011	9951.55	4.8	8%	
2010	9499.3	0.5	13%	
2009	9452.8	-0.7	13%	
2008	9519.3	1.6	12%	
2007	9366.16	0.6	14%	
2006	9308.71	1.4	15%	
2005	9182.39	3.7	17%	
2004	8855.14	0.6	21%	
2003	8798.54	8.6	22%	
2002	8103.32	0.3	32%	
2001	8080.93	1.5	32%	
2000	7963.21	-3.3	34%	
1999	8237.51	4.2	30%	
1998	7909.45	-0.4	35%	
1997	7940.84	-1	35%	
1996	8020.55	4.1	33%	
1995	7702.64	-0.4	39%	
1994	7732.17	4.7	38%	
1993	7387.77	5.3	45%	
1992	7017.93	7.4	52%	
1991	6537.05	2.1	64%	
1990	6401.54	6.3	67%	

Table C2: Construction Cost Index Inflation Recommendations

2. 2014-2017 Construction Cost Index from Seattle, WA. (Toronto CCI is not available for this period).

Table C2 – 1 of 1 DRAINAGE MASTER PLAN

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
Short Term 2019-2023							
Storm Sewers							
K_860E11	\$67,800	\$57,100	\$10,700	2019	900	19.8	Clayburn
K_527E11	\$96,700	\$89,000	\$7,700	2020	1050	28.8	Clayburn
DOWNES_PIPE_6C	\$142,000	\$128,600	\$13,400	2022	1350	5.0	Downes
DOWNES_PIPE_6A	\$217,800	\$191,500	\$26,300	2023	1050	27.0	Downes
DOWNES_PIPE_6B	\$112,300	\$101,500	\$10,800	2023	750	9.0	Downes
MARSHALL 1	\$106,500	\$106,500	\$0	2023	525	63.5	Marshall
Culverts/Bridges				•	•	• •	
<_CV76	\$851,100	\$401,800	\$449,300	2019	3600x2400	19.2	Clayburn
<_CV140	\$254,700	\$213,500	\$41,200	2019	1800	12.0	Clayburn
MARSHALL_C7	\$322,600	\$298,000	\$24,600	2019	1650	23.6	Marshall
MARSHALL_C9	\$419,400	\$325,400	\$94,000	2019	2100	24	Marshall
MARSHALL_C1	\$133,400	\$133,400	\$0	2020	1350	20	Marshall
MARSHALL C2	\$213,100	\$192,100	\$21,000	2020	1200	20.8	Marshall
MARSHALL C3	\$216,100	\$171,500	\$44,600	2020	1350	16	Marshall
MARSHALL C4	\$178,000	\$158,200	\$19,800	2020	1050	17.5	Marshall
MARSHALL C5	\$222,100	\$175,800	\$46,300	2021	1350	17	Marshall
MARSHALL C11	\$189,400	\$171,500	\$17,900	2021	1200	16	Marshall
< CV193	\$387,600	\$270,600	\$117,000	2021	2100	13.6	Clayburn
CV221	\$413,600	\$299,600	\$114,000	2021	2400	11.9	Clayburn
CV2	\$564,200	\$315,800	\$248,400	2022	3050	13.6	Clayburn
ARSHALL C6	\$470,100	\$446,400	\$23,700	2022	1650	44.1	Marshall
< CV44	\$491,800	\$304,300	\$187,500	2023	2700	12.4	Clayburn
 K	\$136,300	\$128,500	\$7,800	2023	500	26.0	Clayburn
ARSHALL C12	\$121,800	\$121,800	\$0	2023	1050	25.1	Marshall
Channel Upgrades	, ·,	<u> </u>	· · ·	•			
nstall Floodboxes	¢400 540	¢o	¢400 540	0000	N/A	N/A	Clayburn Village
nstall Flap gates	\$162,510	\$0	\$162,510	2020	N/A	N/A	Clayburn Village
Construct North Berm Ch. 12710-12930	\$300,000	\$0	\$300,000	2020	N/A	N/A	Clayburn Village
Deepen Under Clayburn Bridge	¢55 500	¢o	¢55.500	0000	N/A	N/A	Matsqui SI
Ch. 14284-13884	\$55,568	\$0	\$55,568	2020	N/A	N/A	Clayburn Creek
Ch. 14284-14212					N/A	N/A	Clayburn Creek
Ch. 14202-13825	\$365,910	\$0	\$365,910	2020	N/A	N/A	Clayburn Creek
Ch. 13815-13333					N/A	N/A	Clayburn Creek
Ch. 13323-13300					N/A	N/A	Clayburn Creek
Ch. 13282-13086	A707 705	\$ 0	A707 705	0000	N/A	N/A	Clayburn Creek
Ch. 13076-12727	\$707,705	\$0	\$707,705	2022	N/A	N/A	Clayburn Creek
Ch. 12710-12574					N/A	N/A	Clayburn Creek

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
Short Term 2019-2023							
Detention Pond							
P13					N/A	N/A	Clayburn (Stoney)
P14					N/A	N/A	Clayburn (Stoney)
P21					N/A	N/A	Clayburn (Stoney)
P40					N/A	N/A	Clayburn (Stoney)
P49	\$193,422	\$193,422	\$0	2021	N/A	N/A	Clayburn (Stoney)
P50					N/A	N/A	Clayburn (Stoney)
P52 and P53					N/A	N/A	Clayburn (Stoney)
P20-1 and P20-2					N/A	N/A	Clayburn (Stoney)
P51					N/A	N/A	Clayburn (Stoney)
Pond A	\$94,606	\$94,606	\$0	2021	N/A	N/A	Downes
Pond C	\$94,606	\$94,606	\$0	2021	N/A	N/A	Downes
Pond G	\$189,212	\$189,212	\$0	2021	N/A	N/A	Downes
Urban Creek Stabilization					•		
Gill Creek Erosion Sites	\$750,000	\$0	\$750,000	2019	N/A	N/A	Marshall
Horn Creek Bank Stabilization	\$906,000	\$0	\$906,000	2021	N/A	N/A	Willband
Study Project List							
Subdivision Development Bylaw Update - Phase 2	\$20,000	\$20,000	\$0	2019	N/A	N/A	City wide
Stormwater Source Control Bylaw Update	\$30,000	\$30,000	\$0	2019	N/A	N/A	City wide
Infill Development Strategy	\$20,000	\$20,000	\$0	2019	N/A	N/A	City wide
Matsqui Phase 2 Study	\$458,000	\$458,000	\$0	2019	N/A	N/A	Matsqui
Stormwater Fee and Charges Feasibility Study	\$200,000	\$200,000	\$0	2020	N/A	N/A	City wide
Pepin Brook Flooding (Bertrand Creek Watershed)	\$20,000	\$20,000	\$0	2020	N/A	N/A	Betrand
Howes Creek tributary flooding (Bertrand Creek Watershee	\$20,000	\$20,000	\$0	2020	N/A	N/A	Betrand
Downes Creek Tributary Lowland Flooding	\$20,000	\$20,000	\$0	2020	N/A	N/A	Downes
Storm main full near Blueridge Dr (Downes Creek and Fish	\$20,000	\$20,000	\$0	2020	N/A	N/A	Downes/Fishtrap border
Potential Community Detention U/S of Horn Creek and Bo	\$20,000	\$20,000	\$0	2020	N/A	N/A	Willband
Sumas Prairie Drainage Study Phase 2 in 2018	\$200,000	\$200,000	\$0	2020	N/A	N/A	Sumas
Fishtrap Creek Detention, Simpson Ave	\$135,000	\$135,000	\$0	2021	N/A	N/A	Fishtrap
Fishtrap Creek Drainage	\$27,000	\$27,000	\$0	2021	N/A	N/A	Fishtrap
Delair Park Community Detention Study	\$167,000	\$167,000	\$0	2021	N/A	N/A	
Nathan Creek ISMP Study	\$350,000	\$350,000	\$0	2022	N/A	N/A	Nathan
Miscellaneous					• 	• 	
Gill Creek Culvert Headwall Rehabilitation	\$685,000	\$685,000	\$0	2019	N/A	N/A	Marshall

Table C3 - 2 of 8

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
Medium Term 2024-2028							
Storm Sewers							
K_525E11	\$68,100	\$68,100	\$0	2025	525	38.0	Clayburn
K_517E11	\$248,700	\$248,700	\$0	2026	675	118.3	Clayburn
K_526E11	\$4,900	\$4,900	\$0	2026	450	4.0	Clayburn
	\$226,100	\$226,100	\$0	2027	750	29.5	Marshall
DOWNES_PIPE_1	\$600,800	\$556,600	\$44,200	2027	1800	17.4x2	Downes
K_268E11	\$48,700	\$48,700	\$0	2027	525	22.2	Clayburn
K_517E10	\$204,800	\$204,800	\$0	2028	900	80.7	Clayburn
K 959E10	\$155,000	\$155,000	\$0	2028	525	112.1	Clayburn
	\$119,000	\$119,000	\$0	2028	675	50.2	Clayburn
K_945E10	\$35,000	\$35,000	\$0	2028	600	9.5	Clayburn
 K_948E10	\$112,200	\$112,200	\$0	2028	675	52.4	Clayburn
K 947E10	\$196,600	\$196,600	\$0	2028	750	99.3	Clayburn
	\$90,600	\$90,600	\$0	2029	750	40.4	Clayburn
K 1407E10	\$91,100	\$91,100	\$0	2028	675	18.7	Clayburn
K_1884E10	\$98,900	\$82,700	\$16,200	2028	900	30.0	Clayburn
MARSHALL 3	\$93,300	\$62,600	\$30,700	2028	900	27.6	Marshall
Culverts/Bridges	ļ · · /		. ,	•	ł	•	
K CV52	\$604,300	\$476,800	\$127,500	2024	1800	58.5	Clayburn
K CV211	\$202,300	\$202,300	\$0	2024	600	42.8	Clayburn
MARSHALL C8	\$440,700	\$440,700	\$0	2024	1200	78.3	Marshall
K CV116	\$315,400	\$180,300	\$135,100	2025	900	34.5	Clayburn
K CV224	\$264,000	\$164,800	\$99,200	2025	1200	25.3	Clayburn
 Culvert at Vye Rd on Saar Crk	\$845,600	\$668,024	\$177,576	2025	3600x4100	22.2	Sumas
K CV42	\$130,200	\$117,900	\$12,300	2026	N/A	N/A	Clayburn
K CV46	\$329,300	\$183,600	\$145,700	2026	750	46.5	Clayburn
K CV133	\$158,500	\$113,400	\$45,100	2026	1200	6.5	Clayburn
MARSHALL C10	\$179,300	\$179,300	\$0	2026	1200	23.4	Marshall
Channel Upgrades		, ,,		4		-	
Construct 100L/s Pump Station	\$572,455	\$0	\$572,455	2024	N/A	N/A	Clayburn Village
Urban Creek Stabilization	, . ,		, ,				- , ,
T11 208	\$48,272	\$0	\$48,272	2024	N/A	N/A	Marshall
T11 212	\$24,136	\$0	\$24,136	2025	N/A	N/A	Marshall
T7 185	\$24,136	\$0	\$24,136	2025	N/A	N/A	Marshall
Clayburn Expand & Improve existing Dutra sediment trap	\$80,000	\$0	\$80,000	2025	N/A	N/A	Clayburn
Erosion at Matsgui Dyke from Erosion Arcs F & G	\$1,869,752	\$0	\$1,869,752	2025	N/A	N/A	Matsqui dike
Detention Pond	\$ 1,000,102	ΨŬ	¢ 1,000,102	2020			matoqui anto
P47					N/A	N/A	Clayburn
P12					N/A	N/A	Clayburn (Stoney)
P18					N/A	N/A	Clayburn (Stoney)
P19-1, P19-2, P19-3					N/A	N/A	Clayburn (Stoney)
P24-1,P24-2, P24-3, P24-4	\$214,914	\$214.914	\$0	2025	N/A	N/A N/A	Clayburn (Stoney)
P26-1, P26-2	φ <u> </u>	<i>q</i> ,011	40		N/A	N/A	Clayburn (Stoney)
P36					N/A	N/A	Clayburn (Stoney)
P39-1, P39-2					N/A	N/A N/A	Clayburn (Stoney)
100-1,100-2	4				N/A N/A	N/A N/A	Clayburn

Table C3 - 3 of 8

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
Medium Term 2024-2028							
Study Project List							
DMP Update (every 5 years) 2024, 2029, 2034, 2039	\$200,000	\$200,000	\$0	2024	N/A	N/A	City wide
Dike Updates Detailed Cost by Phase	\$30,000	\$30,000	\$0	2027	N/A	N/A	City wide
Pump Stations Resiliency Study (Back-up Power)	\$100,000	\$100,000	\$0	2024	N/A	N/A	Matsqui dike
Barrowtown Pump Station Upgrade Cost Benefit Study	\$50,000	\$50,000	\$0	2026	N/A	N/A	Barrowtown PS
₋ong Term 2029-2043							
Storm Sewers							
K_420E11	\$133,400	\$133,400	\$0	2029	525	91.4	Clayburn
<_1938E10	\$63,900	\$63,900	\$0	2029	450	39.0	Clayburn
<_1941E10	\$69,700	\$69,700	\$0	2029	900	17.5	Clayburn
<_908E11	\$41,300	\$37,300	\$4,000	2029	600	7.0	Clayburn
<_1309E11	\$43,200	\$43,200	\$0	2029	450	26.5	Clayburn
_1772E10	\$166,900	\$166,900	\$0	2029	450	127.7	Clayburn
<_1095E10	\$152,700	\$152,700	\$0	2029	450	116.1	Clayburn
<_1100E10	\$64,500	\$64,500	\$0	2029	450	43.9	Clayburn
/ARSHALL_5	\$393,400	\$393,400	\$0	2030	675	102.9	Marshall
/ARSHALL_6	\$212,500	\$212,500	\$0	2030	675	102.2	Marshall
<u>518E10</u>	\$206,700	\$162,700	\$44,000	2031	900	81.5	Clayburn
_1262F10	\$97,700	\$81,800	\$15,900	2031	900	29.5	Clayburn
_511E10	\$149,800	\$119,000	\$30,800	2031	900	57.2	Clayburn
_111E12	\$34,200	\$34,200	\$0	2031	675	3.0	Clayburn
_388F12	\$97,300	\$97,300	\$0	2031	375	70.7	Clayburn
_386F12	\$32,600	\$32,600	\$0	2031	450	9.0	Clayburn
_370F12	\$22,700	\$22,700	\$0	2031	600	3.0	Clayburn
C_2342F10	\$66,000	\$66,000	\$0	2031	375	27.5	Clayburn
C_2358F10	\$46,800	\$46,800	\$0	2031	375	25.0	Clayburn
C_1710E11	\$80,800	\$80,800	\$0	2031	675	28.9	Clayburn
_1713E11	\$25,400	\$25,400	\$0	2031	675	2.1	Clayburn
C_6F12	\$94,200	\$73,300	\$20,900	2031	600	36.4	Clayburn
_5F12	\$60,400	\$60,400	\$0	2031	525	33.6	Clayburn
C_1416E10	\$66,300	\$66,300	\$0	2031	675	26.2	Clayburn
_1408E10	\$66,400	\$66,400	\$0	2032	675	26.2	Clayburn
_1885E10	\$84,900	\$84,900	\$0	2032	750	35.2	Clayburn
C_1141F11	\$61,200	\$61,200	\$0	2032	525	26.5	Clayburn
IARSHALL_2	\$228,700	\$164,800	\$63,900	2032	675	111.2	Marshall
_481E10	\$415,100	\$290,800	\$124,300	2032	1500	100.5	Clayburn
_374F12	\$46,500	\$46,500	\$0	2032	600	16.2	Clayburn
_930E10	\$81,600	\$81,600	\$0	2032	375	57.9	Clayburn
_940E10	\$103,900	\$103,900	\$0	2032	525	61.4	Clayburn
_927E10	\$108,000	\$108,000	\$0	2033	450	79.5	Clayburn
_929E10	\$96,000	\$96,000	\$0	2033	525	54.9	Clayburn
_1648E11	\$59,100	\$59,100	\$0	2033	600	16.8	Clayburn
C_1102E10	\$33,400	\$33,400	\$0	2033	450	18.5	Clayburn
ARSHALL_7	\$177,100	\$177,100	\$0	2033	750	82.5	Marshall
OWNES_PIPE_3B	\$549,900	\$549,900	\$0	2033	1050	217.0	Downes
(519E10	\$196,200	\$154,600	\$41,600	2034	900	77.0	Clayburn

Ong Term 2029-2043 Storm Sewers 2351F10 2350F10 2349F10 244F12 1312E11 JOWINES_PIPE_7B MARSHALL_8 946E10 975E10 980E10 1271F10 1229F10	\$50,300 \$100,400 \$52,900 \$32,200 \$164,500 \$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100 \$127,200	\$34,800 \$48,900 \$52,900 \$121,200 \$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$15,500 \$51,500 \$0 \$43,300 \$14,600 \$0 \$0 \$0 \$0 \$0	2034 2034 2034 2034 2034 2034 2034 2034	600 600 525 525 600 600 525	11.9 39.9 37.3 10.6 75.5 138.0	Clayburn Clayburn Clayburn Clayburn Clayburn Downes
2351F10 2350F10 2349F10 4F12 1312E11 DWNES_PIPE_7B MARSHALL_8 946E10 975E10 980E10 980E10 990E11 1271F10	\$100,400 \$52,900 \$32,200 \$164,500 \$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$48,900 \$52,900 \$121,200 \$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$51,500 \$0 \$43,300 \$14,600 \$0 \$0 \$0	2034 2034 2034 2034 2034 2034 2034	600 525 525 600 600	39.9 37.3 10.6 75.5 138.0	Clayburn Clayburn Clayburn Clayburn Clayburn
2350F10 2349F10 4F12 1312E11 DOWNES_PIPE_7B MARSHALL_8 946E10 975E10 980E10 901E11 1271F10	\$100,400 \$52,900 \$32,200 \$164,500 \$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$48,900 \$52,900 \$121,200 \$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$51,500 \$0 \$43,300 \$14,600 \$0 \$0 \$0	2034 2034 2034 2034 2034 2034 2034	600 525 525 600 600	39.9 37.3 10.6 75.5 138.0	Clayburn Clayburn Clayburn Clayburn Clayburn
2349F10 4F12 1312E11 JOWNES_PIPE_7B MARSHALL_8 946E10 975E10 980E10 901E11 1271F10	\$52,900 \$32,200 \$164,500 \$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$52,900 \$32,200 \$121,200 \$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$0 \$0 \$43,300 \$14,600 \$0 \$0 \$0 \$0	2034 2034 2034 2034 2034 2034	525 525 600 600	37.3 10.6 75.5 138.0	Clayburn Clayburn Clayburn
4F12 1312E11 OWNES_PIPE_7B MARSHALL_8 946E10 975E10 980E10 980E10 1271F10	\$32,200 \$164,500 \$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$32,200 \$121,200 \$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$0 \$43,300 \$14,600 \$0 \$0 \$0 \$0	2034 2034 2034 2034 2034	525 600 600	10.6 75.5 138.0	Clayburn Clayburn
_1312E11 OWNES_PIPE_7B 4ARSHALL_8 _946E10 _975E10 _980E10 _980E10 _901E11 _1271F10	\$164,500 \$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$121,200 \$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$43,300 \$14,600 \$0 \$0 \$0 \$0	2034 2034 2034	600 600	75.5 138.0	Clayburn
OWNES_PIPE_7B MARSHALL_8 946E10 975E10 980E10 980E10 1271F10	\$233,400 \$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$218,800 \$140,100 \$64,600 \$109,900 \$96,600	\$14,600 \$0 \$0 \$0 \$0	2034 2034	600	138.0	
MARSHALL_8 946E10 975E10 980E10 901E11 1271F10	\$140,100 \$64,600 \$109,900 \$96,600 \$100,100	\$140,100 \$64,600 \$109,900 \$96,600	\$0 \$0 \$0	2034			Downes
946E10 975E10 980E10 901E11 1271F10	\$64,600 \$109,900 \$96,600 \$100,100	\$64,600 \$109,900 \$96,600	\$0 \$0		525		
975E10 980E10 901E11 1271F10	\$109,900 \$96,600 \$100,100	\$109,900 \$96,600	\$0	2035		91.0	Marshall
980E10 901E11 1271F10	\$96,600 \$100,100	\$96,600			450	44.0	Clayburn
_901E11 _1271F10	\$100,100			2035	525	75.1	Clayburn
1271F10			\$0	2035	525	64.3	Clayburn
	\$127,200	\$100,100	\$0	2035	375	68.6	Clayburn
1269F10		\$127,200	\$0	2035	525	80.5	Clayburn
	\$69,300	\$69,300	\$0	2035	525	33.1	Clayburn
C_1267F10	\$64,200	\$64,200	\$0	2035	375	42.6	Clayburn
C_1266F10	\$61,400	\$61,400	\$0	2035	375	40.3	Clayburn
520E10	\$165,300	\$130,900	\$34,400	2035	900	63.8	Clayburn
OWNES_PIPE_3C	\$1,099,756	\$1,099,756	\$0	2036	1500	125.0	Downes
OWNES PIPE 2A	\$229,800	\$229,800	\$0	2037	600	116.0	Downes
OWNES PIPE 4	\$385,200	\$385,200	\$0	2037	600	95.6	Downes
1010F10	\$186,200	\$186,200	\$0	2037	375	134.6	Clayburn
ARSHALL 9	\$82,700	\$65,500	\$17,200	2038	600	30.0	Marshall
400E11	\$58,200	\$58,200	\$0	2038	375	29.9	Clayburn
1306E11	\$27,700	\$27,700	\$0	2038	300	5.0	Clayburn
OWNES PIPE 7A	\$29,300	\$29,300	\$0	2038	200	15.3	Downes
514E10	\$81,600	\$50,500	\$31,100	2038	900	28.0	Clayburn
	\$123,600	\$91,000	\$32,600	2038	600	56.7	Clayburn
1246E11	\$32,600	\$32,600	\$0	2038	600	2.1	Clayburn
1270F10	\$62,300	\$62,300	\$0	2038	375	41.0	Clayburn
IARSHALL 10	\$74,300	\$74,300	\$0	2038	525	37.2	Marshall
OWNES PIPE 3A	\$432,500	\$401,200	\$31,300	2038	600	54.5	Downes
OWNES PIPE 5	\$630,600	\$630,600	\$0	2038	675	48.8	Downes
371F12	\$71,700	\$54,300	\$17,400	2039	600	30.2	Clayburn
_684F12	\$19,900	\$19,100	\$800	2039	600	1.4	Clayburn
_72F12	\$31,300	\$26,900	\$4,400	2039	600	7.8	Clayburn
907E11	\$35,300	\$35,300	\$0	2039	375	15.6	Clayburn
1307E11	\$112,900	\$112,900	\$0	2039	450	83.5	Clayburn
1092E10	\$55,700	\$55,700	\$0	2039	450	36.7	Clayburn
1775E10	\$45,100	\$45,100	\$0	2039	450	28.0	Clayburn
	\$15,800	\$10,800	\$5,000	2039	525	7.0	Clayburn
1140F11	\$55,900	\$32,600	\$23,300	2039	375	32.5	Clayburn
	\$96,000	\$96,000	<u>\$23,300</u> \$0	2039	300	68.6	Clayburn
1268F10	\$90,000	\$36,200	\$0	2040	375	19.7	Clayburn
(1036F10	\$30,200	\$63,100	\$0 \$0	2040	375	41.7	Clayburn
< 480E10	\$03,100	\$03,100	\$0	2040	900	53.4	Clayburn
(1352E11	\$141,000 \$27,900	\$112,200 \$27,900	\$28,800 \$0	2040	450	53.4	Clayburn

Table C3 - 5 of 8

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
Long Term 2029-2043							
Storm Sewers							
MARSHALL_11	\$106,500	\$106,500	\$0	2040	525	63.5	Marshall
K_387E11	\$89,300	\$89,300	\$0	2040	525	49.5	Clayburn
K_453E11	\$77,100	\$50,800	\$26,300	2040	200	36.6	Clayburn
DOWNES_PIPE_7C	\$90,500	\$90,500	\$0	2040	600	35.0	Downes
K_199E11	\$62,700	\$62,700	\$0	2040	450	33.6	Clayburn
DOWNES_PIPE_2B	\$634,700	\$598,700	\$36,000	2040	525	100.7	Downes
K_1361E11	\$55,800	\$36,400	\$19,400	2041	600	15.0	Clayburn
K_1843E10	\$198,000	\$198,000	\$0	2041	900	72.4	Clayburn
K_1235F11	\$52,600	\$52,600	\$0	2041	675	13.2	Clayburn
K_1068E10	\$167,400	\$167,400	\$0	2041	450	119.2	Clayburn
K_446E11	\$77,700	\$77,700	\$0	2042	300	45.9	Clayburn
K_745E11	\$27,900	\$27,900	\$0	2042	450	14.0	Clayburn
<_454E11	\$66,600	\$37,000	\$29,600	2042	250	41.2	Clayburn
K_109E12	\$34,800	\$34,800	\$0	2042	600	3.3	Clayburn
K_1060F11	\$124,900	\$124,900	\$0	2042	525	78.6	Clayburn
K_1362E11	\$45,300	\$37,800	\$7,500	2042	750	13.2	Clayburn
K_1353E11	\$72,900	\$36,000	\$36,900	2042	600	28.5	Clayburn
K_1360E11	\$42,500	\$27,500	\$15,000	2042	600	11.6	Clayburn
K_1359E11	\$107,600	\$80,100	\$27,500	2042	675	47.8	Clayburn
K_1358E11	\$117,200	\$86,600	\$30,600	2042	675	53.2	Clayburn
K_1357E11	\$77,000	\$59,300	\$17,700	2042	750	30.8	Clayburn
Culverts/Bridges							
K_CV135	\$199,600	\$199,600	\$0	2030	1800	15.6	Clayburn
K_CV89	\$303,000	\$205,400	\$97,600	2030	3050x1500	8.4	Clayburn
K_CV60	\$457,500	\$256,800	\$200,700	2034	3050x1500	14.3	Clayburn
Culvert at Old Yale Rd on Arnold Slough	\$432,500	\$341,675	\$90,825	2041	3000x2700	13.1	Sumas
Channel Upgrades							•
Farm Bridge Upgrade	\$225,417	\$0	\$225,417	2029	N/A	N/A	Clayburn backwatered
Urban Creek Stabilization						•	· · · · · ·
T7 183	\$36,204	\$0	\$36,204	2032	N/A	N/A	Marshall
Horn BOA BioEngineering	\$11,121	\$0	\$11,121	2032	N/A	N/A	Willband
Horn BOA Sediment Trap/Basin	\$77,848	\$0	\$77,848	2032	N/A	N/A	Willband
Downes Erosion 8 sites	\$151,370	\$0	\$151,370	2032	N/A	N/A	Downes
Clayburn Erosion Sites	\$53,728	\$0	\$53,728	2033	N/A	N/A	Clayburn
Detention Pond		· · ·	. ,		-		, , , , , , , , , , , , , , , , , , , ,
2					N/A	N/A	Clayburn
>3	* 05.005	* 05 005	\$ 0	0005	N/A	N/A	Clayburn
P31	\$85,965	\$85,965	\$0	2035	N/A	N/A	Clayburn (Stoney)
232					N/A	N/A	Clayburn (Stoney)
Pond Y	\$1,005,191	\$0	\$1,005,191	2041	N/A	N/A	Downes
Pond Z	\$5,061,431	\$0	\$5,061,431	2042	N/A	N/A	Downes
Miscellaneous	\$0,001,101	<i>\</i>	20,001,101				
Barrowtown PS - Backup Power (construction)	\$4,131,290	\$4,131,290	\$0	2040	N/A	N/A	Barrowtown PS
Barrowtown PS - Upgrades (pump head)	\$1,750,000	\$1,750,000	\$0	2040	N/A	N/A	Barrowtown PS
OtherPS - Backup Powder (construction)	\$3,079,120	\$3,079,120	\$0	2040	N/A	N/A	Matsqui Dike

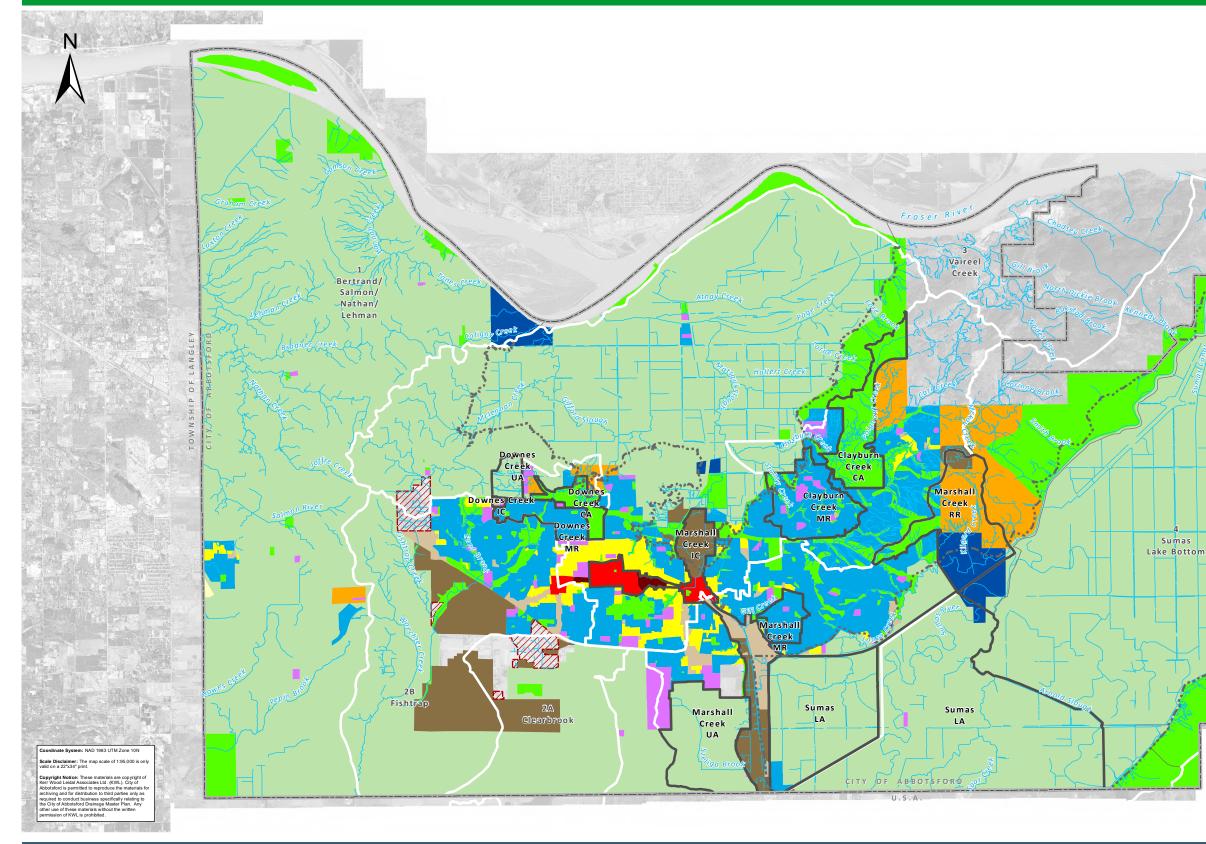
Table C3 - 6 of 8

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
100% DCC Projects							
Storm Sewers							
MARSHALL_16	\$71,400	\$0	\$71,400	time of development	1350	10.8	Marshall
MARSHALL_12	\$34,200	\$0	\$34,200	time of development	750	3	Marshall
MARSHALL_14	\$397,800	\$0	\$397,800	time of development	1200	140.8	Marshall
MARSHALL_15	\$311,300	\$0	\$311,300	time of development	1200	107.8	Marshall
MARSHALL_18	\$269,100	\$0	\$269,100	time of development	1200	91.7	Marshall
K_1370E10	\$146,600	\$0	\$146,600	time of development	300	102.2	Clayburn
K_1418E10	\$58,800	\$0	\$58,800	time of development	250	73.7	Clayburn
MARSHALL_17	\$153,700	\$0	\$153,700	time of development	600	69.5	Marshall
MARSHALL_22	\$58,700	\$0	\$58,700	time of development	1200	11.4	Marshall
MARSHALL_21	\$81,400	\$0	\$81,400	time of development	900	22.5	Marshall
K_1009F10	\$123,200	\$0	\$123,200	time of development	375	83.1	Clayburn
<_989E10	\$33,600	\$0	\$33,600	time of development	200	23.8	Clayburn
K_1904E10	\$23,400	\$0	\$23,400	time of development	200	3.6	Clayburn
MARSHALL_19	\$100,900	\$0	\$100,900	time of development	750	40.1	Marshall
MARSHALL_20	\$116,000	\$0	\$116,000	time of development	450	77.2	Marshall
K_13E11	\$83,500	\$0	\$83,500	time of development	525	44.7	Clayburn
K_33E11	\$78,600	\$0	\$78,600	time of development	600	27.7	Clayburn
K_11E11	\$101,700	\$0	\$101,700	time of development	525	59.6	Clayburn
K_70E12	\$81,500	\$0	\$81,500	time of development	375	49.0	Clayburn
K_131E12	\$46,600	\$0	\$46,600	time of development	675	9.9	Clayburn
K_133E12	\$102,200	\$0	\$102,200	time of development	600	40.8	Clayburn
K_137E12	\$38,800	\$0	\$38,800	time of development	675	5.6	Clayburn
K_869E11	\$45,000	\$0	\$45,000	time of development	450	19.1	Clayburn
K_1711E11	\$46,900	\$0	\$46,900	time of development	450	20.7	Clayburn
	\$46,600	\$0	\$46,600	time of development	300	20.4	Clayburn
< 1903E10	\$37,500	\$0	\$37,500	time of development	250	31.5	Clayburn
	\$55,400	\$0	\$55,400	time of development	375	27.6	Clayburn
K 21E12	\$98,800	\$0	\$98,800	time of development	450	63.1	Clayburn
 K_19E11	\$40,200	\$0	\$40,200	time of development	250	36.8	Clayburn
	\$61,100	\$0	\$61,100	time of development	375	32.3	Clayburn
K_8F12	\$99,400	\$0	\$99,400	time of development	375	63.6	Clayburn
	\$67,400	\$0	\$67,400	time of development	450	37.4	Clayburn
	\$82,600	\$0	\$82,600	time of development	375	49.9	Clayburn
< 37E12	\$73,600	\$0	\$73,600	time of development	375	42.5	Clayburn
38E12	\$73,200	\$0	\$73,200	time of development	375	42.1	Clayburn
√ 36E12	\$122,300	\$0	\$122,300	time of development	375	82.3	Clayburn
Culverts and Bridges		· · ·				· · · · · · · · · · · · · · · · · · ·	
MARSHALL C13	\$786,800	\$0	\$786,800	time of development	2100	16	Marshall
MARSHALL C14	\$339,600	\$0	\$339,600	time of development	1200	140.8	Marshall
MARSHALL C15	\$360,600	\$0	\$360,600	time of development	1200	107.8	Marshall
MARSHALL_C16	\$380,200	\$0	\$380,200	time of development	1350	10.8	Marshall
MARSHALL C17	\$116,100	\$0	\$116,100	time of development	600	69.5	Marshall
< CV45	\$903,000	\$0	\$903,000	time of development	2100	60.9	Clayburn
< CV49	\$784,400	\$0 \$0	\$784,400	time of development	2400	51.2	Clayburn
< CV50	\$191,700	\$0	\$191,700	time of development	1200	16.5	Clayburn

Project List	Project Cost	Capital Cost	DCC Cost	Initiation Time	Conduit Size (2016 OCP)	Conduit Length	Catchment
100% DCC Projects							
Culverts and Bridges							
K_CV37	\$490,900	\$0	\$490,900	time of development	2400	25.5	Clayburn
K_CV117	\$791,500	\$0	\$791,500	time of development	2100	61.4	Clayburn
K_CV84	\$593,800	\$0	\$593,800	time of development	3400	17.6	Clayburn
K_VL57_BDG	\$837,700	\$0	\$837,700	time of development	3400	31.3	Clayburn
K_CV83	\$402,700	\$0	\$402,700	time of development	3600x2100	15.1	Clayburn
K_CV86	\$291,400	\$0	\$291,400	time of development	2400x2100	10.0	Clayburn
K_VL51_BDG.1	\$325,600	\$0	\$325,600	time of development	3600x1800	12.6	Clayburn
K_CV113	\$634,200	\$0	\$634,200	time of development	2400	38.0	Clayburn
K_CV115	\$567,700	\$0	\$567,700	time of development	1800	51.0	Clayburn

Note: Refer to Table C2 in the Appendix C for the construction cost index inflation factor.

Appendix D


Estimate of Project Costs for Unstudied Areas

City of Abbotsford

Drainage Master Plan

Project No.	510.152
Date	June 2018
Scale	1:95,000

Studied/Unstudied Area Boundaries

LegenJMunicipal BoundaryWatercourseMatershed BoundaryAnalysis BoundariesUpland/Lowland Boundary2005 OC/Land UseConce of UseCity CentreCommercialIB on CICP LandIB on CICP LandIB on CICP LandCow Density ResidentialCity ResidentialCi		
Watercourse Watershed Boundary Analysis Boundaries Upland/Lowland Boundary 2005 OCF Land Use Agricultural Choice of Use City Centre IB on CICP Land Industrial Business Institutional Low Density Residential City Residential Suburban Residential Zone Urban Residential	Leger	nd
Watershed BoundaryAnalysis BoundariesUpland/Lowland Boundary2005 OCF Land UseAgriculturalChoice of UseChoice of UseCity CentreBo n CICP LandIB on CICP LandIndustrial BusinessInstitutionalLow Density ResidentialCity ResidentialSuburban Residential ZoneUrban Residential		Municipal Boundary
Analysis BoundariesUpland/Lowland Boundary2005 OCF Land UseAgriculturalChoice of UseCity CentreCommercialIB on CICP LandIB on CICP LandIndustrial BusinessInstitutionalLow Density ResidentialCity ResidentialSuburban Residential ZoneUrban Residential	~~~	Watercourse
Upland/Lowland Boundary2005 OCP Land UseAgriculturalChoice of UseChoice of UseCity CentreCommercialIB on CICP LandIndustrial BusinessInstitutionalResource ConservationLow Density ResidentialCity ResidentialSuburban Residential ZoneUrban Residential	ß	Watershed Boundary
2005 OCP Land Use Agricultural Choice of Use City Centre Commercial Commercial IB on CICP Land Industrial Business Institutional Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential	\mathbb{C}	Analysis Boundaries
AgriculturalChoice of UseChoice of UseCity CentreCommercialIB on CICP LandIndustrial BusinessInstitutionalResource ConservationLow Density ResidentialCity ResidentialSuburban Residential ZoneUrban Residential		Upland/Lowland Boundary
 Choice of Use City Centre Commercial IB on CICP Land Industrial Business Institutional Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential 	2005 OC	P Land Use
City Centre Commercial Commercial IB on CICP Land Industrial Business Institutional Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential		Agricultural
Commercial Commercial IB on CICP Land Industrial Business Institutional Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential		Choice of Use
IB on CICP LandIndustrial BusinessInstitutionalResource ConservationLow Density ResidentialCity ResidentialSuburban Residential ZoneUrban Residential		City Centre
 Industrial Business Institutional Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential 		Commercial
Institutional Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential		IB on CICP Land
Resource Conservation Low Density Residential City Residential Suburban Residential Zone Urban Residential		Industrial Business
Low Density Residential City Residential Suburban Residential Zone Urban Residential		Institutional
City Residential Suburban Residential Zone Urban Residential		Resource Conservation
Suburban Residential Zone Urban Residential		Low Density Residential
Urban Residential		City Residential
		Suburban Residential Zone
Rural Residential		Urban Residential
		Rural Residential

KERR WOOD LEIDAL

Figure D1

	y Calculation for Studied and Unstud	Density						
Sub-Catchment	Selected Land Use Area (2005 OCP)	Storm Sewer (m/ha)	Ditch (m/ha)	Stream (m/ha)	Detention (unit/ha)	Culvert (unit/ha)		
Studied Areas								
Clayburn Creek	Mixed Residential Area	121	2	19	0.17	0.05		
Clayburn Creek	Conservation Area	3	6	76	0.02	0.06		
	Rural Residential	2	20	58	0.01	0.15		
Marshall Creek	Industrial /Commercial Area	93	7	41	0.30	0.19		
Marshall Creek	Mixed Residential Area	138	0	1	0.08	0.00		
	Upland Agriculture	7	0	11	0.01	0.06		
	Upland Agriculture	1	48	55	0.00	0.11		
Dewnee Creek	Mixed Residential Area	158	0	1	0.04	0.01		
Downes Creek	Institutional/Com	157	0	23	0.27	0.00		
	Conservation Area	33	6	75	0.05	0.00		
Sumas Prairie	Lowland Agricultural	2	15	12	0.00	0.07		
Un-Studied Areas								
	Mixed Residential	129	0	10	0.35	0.17		
Bertrand / Salmon / Nathan / Mt. Lehman Creek		30	0	15	0.05	0.62		
		19	0	0	0.21	0.46		
	Upland Agricultural	1	0	23	0.00	0.08		
	Conservation	5	0	27	0.03	0.13		
		27	0	0	0.11	0.74		
	Industrial / Institutional	75	0	0	0.35	0.39		

Table D1 - 1 of 2

Table D1: Drainage Density Calculation for Studied and Unstudied Areas

CITY OF ABBOTSFORD Drainage Master Plan Final Report June 2018

		Density						
Sub-Catchment	Selected Land Use Area (2005 OCP)	Storm Sewer (m/ha)	Ditch (m/ha)	Stream (m/ha)	Detention (unit/ha)	Culvert (unit/ha)		
Un-Studied Areas					-	-		
	Upland Agricultural	1	0	0	0.00	0.02		
	Mixed Residential	428	0	0	0.00	0.00		
		66	0	0	2.51	0.00		
Clearbrook Rd	Conservation	16	0	0	0.05	0.00		
		104	0	11	0.96	0.08		
	Commercial / Industrial / Institutional	15	0	0	0.00	0.19		
		32	2	11	0.11	0.07		
	Mixed Residential	138	0	6	0.10	0.04		
		97	0	0	0.10	0.04		
		109	0	2	0.42	0.04		
Fish Tren Creek	Upland Agricultural	1	0	17	0.01	0.08		
Fish Trap Creek	Conservation	50	2	62	0.20	0.30		
	Industrial / Institutional / Commercial	158	1	12	0.42	0.03		
		82	2	7	0.29	0.08		
		71	0	11	0.33	0.11		
	Rural Residential	0	0	49	0.00	0.00		
Voireal Creak	Mixed Residential	1	0	103	0.01	0.00		
Vaireel Creek	Upland Agricultural	0	0	51	0.00	1.45		
	Conservation Area	0	0	38	0.00	0.04		
	Lowland Agricultural	0	27	6	0.00	0.12		
Ourseal also Dattant Arra	Lowland Residential	0	10	30	0.00	0.06		
Sumas Lake Bottom Area	Conservation	0	1	35	0.00	0.01		
	Institutional/COU	7	32	0	0.00	0.33		

Table D1 - 2 of 2

Appendix E Project Prioritization

Table E1: Project Rating and Prioritization Score (by Project)

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Community Impacts	Economic Impacts	Environmental / Agricultrual Impact	Total Score
Storm Sewer Upgrades							-	-	-	
K_860E11		Clayburn	5	5	5	5	2	2	N/A	4.4
K_527E11		Clayburn	5	4	5	5	2	3	N/A	4.3
K_525E11		Clayburn	5	3	5	5	2	1	N/A	3.9
K_517E11		Clayburn	5	1	5	5	2	3	N/A	3.7
K_526E11		Clayburn	5	2	5	5	2	1	N/A	3.7
K_268E11		Clayburn	5	1	5	5	2	2	N/A	3.6
K_517E10		Clayburn	3	5	4	5	2	2	N/A	3.6
K_1407E10		Clayburn	3	5	4	5	2	2	N/A	3.6
K_1884E10		Clayburn	3	5	4	5	2	2	N/A	3.6
K_420E11		Clayburn	3	5	4	5	2	1	N/A	3.5
K_518E10		Clayburn	3	4	4	5	2	3	N/A	3.5
K_959E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 943E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 945E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 948E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 947E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 967E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 1262F10		Clayburn	3	4	4	5	2	3	N/A	3.5
K_1938E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 1941E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 1772E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K_1095E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 1100E10		Clayburn	3	5	4	5	2	1	N/A	3.5
K 908E11		Clayburn	3	5	4	5	2	1	N/A	3.5
K_1309E11		Clayburn	3	5	4	5	2	1	N/A	3.5
K_111E12		Clayburn	3	5	4	5	1	1	N/A	3.4
K 388F12		Clayburn	3	5	4	5	1	1	N/A	3.4
K_386F12		Clayburn	3	5	4	5	1	1	N/A	3.4
K 370F12		Clayburn	3	5	4	5	1	1	N/A	3.4
K 511E10		Clayburn	3	4	4	5	2	2	N/A	3.4
K 2342F10		Clayburn	3	5	4	5	1	1	N/A	3.4
K_2358F10	1	Clayburn	3	5	4	5	1	1	N/A	3.4
K 1710E11		Clayburn	3	4	4	5	2	2	N/A	3.4
K 1713E11	1	Clayburn	3	4	4	5	2	2	N/A	3.4
K_6F12		Clayburn	3	5	4	5	1	1	N/A	3.4
K 5F12	1	Clayburn	3	5	4	5	1	1	N/A	3.4
K_0112 K_1416E10		Clayburn	3	4	4	5	2	2	N/A	3.4
K 1408E10	1	Clayburn	3	4	4	5	2	2	N/A	3.4
K_1141F11		Clayburn	3	5	4	5	1	1	N/A	3.4
K_1885E10		Clayburn	3	4	4	5	2	2	N/A	3.4

Table E1 - 1 of 7

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Community Impacts	Economic Impacts	Environmental / Agricultrual Impact	Total Score
Storm Sewer Upgrades										
K_481E10		Clayburn	3	5	4	1	2	3	N/A	3.3
K_374F12		Clayburn	3	4	4	5	1	2	N/A	3.3
K_930E10		Clayburn	3	4	4	5	2	1	N/A	3.3
K_940E10		Clayburn	3	4	4	5	2	1	N/A	3.3
K_927E10		Clayburn	3	4	4	5	2	1	N/A	3.3
K_929E10		Clayburn	3	4	4	5	2	1	N/A	3.3
K_1102E10		Clayburn	3	4	4	5	2	1	N/A	3.3
K_1648E11		Clayburn	3	4	4	5	1	2	N/A	3.3
K_2351F10		Clayburn	3	4	4	5	1	1	N/A	3.2
K_2350F10		Clayburn	3	4	4	5	1	1	N/A	3.2
K_2349F10		Clayburn	3	4	4	5	1	1	N/A	3.2
K_519E10		Clayburn	3	3	4	5	2	2	N/A	3.2
K_4F12		Clayburn	3	4	4	5	1	1	N/A	3.2
K_1312E11		Clayburn	3	3	4	5	2	2	N/A	3.2
K_975E10		Clayburn	3	3	4	5	2	1	N/A	3.1
K_980E10		Clayburn	3	3	4	5	2	1	N/A	3.1
K_946E10		Clayburn	3	3	4	5	2	1	N/A	3.1
K_901E11		Clayburn	3	3	4	5	2	1	N/A	3.1
K_520E10		Clayburn	3	2	4	5	2	2	N/A	3.0
K_1267F10		Clayburn	3	5	4	1	1	1	N/A	3.0
K_1266F10		Clayburn	3	5	4	1	1	1	N/A	3.0
K_1271F10		Clayburn	3	5	4	1	1	1	N/A	3.0
K_1269F10		Clayburn	3	5	4	1	1	1	N/A	3.0
K_1306E11		Clayburn	3	2	4	5	2	1	N/A	2.9
K_1010F10		Clayburn	3	4	4	1	2	1	N/A	2.9
K_400E11		Clayburn	3	2	4	5	2	1	N/A	2.9
K_1709E11		Clayburn	3	1	4	5	2	2	N/A	2.8
K_514E10		Clayburn	3	1	4	5	2	2	N/A	2.8
K_1270F10		Clayburn	3	4	4	1	1	1	N/A	2.8
K_371F12		Clayburn	3	1	4	5	1	2	N/A	2.7
K_684F12		Clayburn	3	1	4	5	1	2	N/A	2.7
K_72F12		Clayburn	3	1	4	5	1	2	N/A	2.7
K_1307E11		Clayburn	3	1	4	5	2	1	N/A	2.7
K_907E11		Clayburn	3	1	4	5	2	1	N/A	2.7
K_1775E10		Clayburn	3	1	4	5	2	1	N/A	2.7
K_1092E10		Clayburn	3	1	4	5	2	1	N/A	2.7
K_1140F11		Clayburn	3	1	4	5	1	1	N/A	2.6
K_1272F10		Clayburn	3	3	4	1	1	1	N/A	2.6
K_1268F10		Clayburn	3	3	4	1	1	1	N/A	2.6
K_1036F10		Clayburn	3	3	4	1	1	1	N/A	2.6
K_2347F10	1	Clayburn	3	1	4	5	1	1	N/A	2.6

able E1 - 2 of 7

DRAINAGE MASTER PLAN

4

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Community Impacts	Economic Impacts	Environmental / Agricultrual Impact	Total Score
Storm Sewer Upgrades									-	
K_480E10		Clayburn	3	1	4	1	2	3	N/A	2.5
K_1246E11		Clayburn	1	5	3	5	2	2	N/A	2.8
K_1352E11		Clayburn	1	4	3	5	2	1	N/A	2.5
K_387E11		Clayburn	1	4	3	5	2	1	N/A	2.5
K_453E11		Clayburn	1	4	3	5	2	1	N/A	2.5
K_1843E10		Clayburn	1	2	3	5	2	3	N/A	2.3
K_199E11		Clayburn	1	3	3	5	2	1	N/A	2.3
K_1361E11		Clayburn	1	3	3	5	2	1	N/A	2.3
K_1235F11		Clayburn	1	2	3	5	2	3	N/A	2.3
K_1068E10		Clayburn	1	3	3	5	2	1	N/A	2.3
K_745E11		Clayburn	1	2	3	5	2	1	N/A	2.1
K_454E11		Clayburn	1	2	3	5	2	1	N/A	2.1
K_446E11		Clayburn	1	2	3	5	2	1	N/A	2.1
K_1060F11		Clayburn	1	2	3	5	1	2	N/A	2.1
K_109E12		Clayburn	1	2	3	5	1	2	N/A	2.1
K_1362E11		Clayburn	1	1	3	5	2	2	N/A	2.0
K_1353E11		Clayburn	1	1	3	5	2	1	N/A	1.9
K_1360E11		Clayburn	1	1	3	5	2	1	N/A	1.9
K_1359E11		Clayburn	1	1	3	5	2	1	N/A	1.9
K_1358E11		Clayburn	1	1	3	5	2	1	N/A	1.9
K_1357E11		Clayburn	1	1	3	5	2	1	N/A	1.9
K_1370E10		Clayburn	1	4	1	1	2	1	N/A	1.7
K_1418E10		Clayburn	1	4	1	1	2	1	N/A	1.7
K_1009F10		Clayburn	1	3	1	1	2	1	N/A	1.5
K 989E10		Clayburn	1	3	1	1	2	1	N/A	1.5
K_1904E10		Clayburn	1	3	1	1	2	1	N/A	1.5
K_13E11		Clayburn	1	1	2	1	1	2	N/A	1.3
K_33E11		Clayburn	1	1	2	1	1	2	N/A	1.3
K_11E11		Clayburn	1	1	2	1	1	1	N/A	1.2
K_131E12		Clayburn	1	1	1	1	1	3	N/A	1.2
K_133E12		Clayburn	1	1	1	1	1	3	N/A	1.2
K_137E12		Clayburn	1	1	1	1	1	3	N/A	1.2
K_70E12		Clayburn	1	2	1	1	1	1	N/A	1.2
K 869E11		Clayburn	1	1	1	1	2	1	N/A	1.1
K_1711E11		Clayburn	1	1	1	1	2	1	N/A	1.1
K_1340E10		Clayburn	1	1	1	1	2	1	N/A	1.1
K_1903E10		Clayburn	1	1	1	1	2	1	N/A	1.1
K 1448E10		Clayburn	1	1	1	1	2	1	N/A	1.1
K 21E12		Clayburn	1	1	1	1	1	2	N/A	1.1
K 19E11		Clayburn	1	1	1	1	1	1	N/A	1.0
K 7F12	1	Clayburn	1	1	1	1	1	1	N/A	1.0

able E1 - 3 of 7

DRAINAGE MASTER PLAN

4

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Community Impacts	Economic Impacts	Environmental / Agricultrual Impact	Total Score
Storm Sewer Upgrades										
K_8F12		Clayburn	1	1	1	1	1	1	N/A	1.0
K_27E12		Clayburn	1	1	1	1	1	1	N/A	1.0
K_51E12		Clayburn	1	1	1	1	1	1	N/A	1.0
K_37E12		Clayburn	1	1	1	1	1	1	N/A	1.0
K_38E12		Clayburn	1	1	1	1	1	1	N/A	1.0
K_36E12		Clayburn	1	1	1	1	1	1	N/A	1.0
DOWNES_PIPE_3B	904	Downes	3	5	4	1	1	3	N/A	3.2
DOWNES_PIPE_7B	38	Downes	3	3	4	5	1	3	N/A	3.2
DOWNES PIPE 3C	NEW PIPE	Downes	3	5	0	5	1	5	N/A	3.0
DOWNES PIPE 4	832	Downes	3	4	4	1	1	2	N/A	2.9
DOWNES PIPE 7A	168	Downes	3	4	3	1	4	1	N/A	2.9
DOWNES PIPE 2A	395	Downes	3	4	4	1	1	2	N/A	2.9
DOWNES_PIPE_5	1073	Downes	3	4	3	1	1	2	N/A	2.7
DOWNES PIPE 3A	680	Downes	3	3	4	1	1	2	N/A	2.7
DOWNES PIPE 7C	NEW PIPE	Downes	3	3	0	5	1	3	N/A	2.4
DOWNES PIPE 2B	390	Downes	3	2	3	1	1	2	N/A	2.3
MARSHALL 1	32B10	Marshall	5	3	5	5	4	1	N/A	4.1
MARSHALL 16	951C11	Marshall	4	1	2	5	1	4	N/A	2.8
MARSHALL 12	75B8	Marshall	4	1	2	1	4	3	N/A	2.6
MARSHALL 14	953C11	Marshall	4	1	2	1	1	4	N/A	2.4
MARSHALL 15	960C11	Marshall	4	1	2	1	1	4	N/A	2.4
MARSHALL 4	131B10	Marshall	3	5	4	5	4	1	N/A	3.7
MARSHALL 3	1227A9	Marshall	3	4	4	5	4	2	N/A	3.6
MARSHALL 5	30C8	Marshall	3	5	4	5	1	2	N/A	3.5
MARSHALL 6	28C8	Marshall	3	5	4	5	1	2	N/A	3.5
MARSHALL 2	366C10	Marshall	3	5	4	5	1	1	N/A	3.4
MARSHALL 7	18C8	Marshall	3	4	4	5	1	2	N/A	3.3
MARSHALL 8	39C8	Marshall	3	4	4	5	1	1	N/A	3.2
MARSHALL 9	156B10	Marshall	2	3	3	5	4	2	N/A	2.9
MARSHALL_10	38B10	Marshall	2	3	3	5	4	1	N/A	2.8
MARSHALL 11	32B10	Marshall	1	3	3	5	4	1	N/A	2.5
MARSHALL_18	1107A10	Marshall	1	1	1	5	4	4	N/A	2.0
MARSHALL_17	1228A9	Marshall	1	1	1	5	4	1	N/A	1.7
MARSHALL 22	1558C11	Marshall	1	1	1	5	1	4	N/A	1.7
MARSHALL 21	959C11	Marshall	1	1	1	5	1	3	N/A	1.6
MARSHALL 19	37C8	Marshall	1	1	1	5	1	2	N/A	1.5
MARSHALL 20	12C8	Marshall	1	1	1	5	1	1	N/A	1.4

Table E1 - 4 of 7

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Community Impacts	Economic Impacts	Environmental / Agricultrual Impact	Total Score
Urban Culvert Upgrades			-						-	
K_CV140		Clayburn	5	5	5	5	1	4	5	4.5
K_CV76		Clayburn	5	3	5	5	1	5	5	4.3
K_CV2		Clayburn	5	5	5	5	2	1	5	4.3
K_CV221		Clayburn	5	5	5	1	1	5	5	4.2
K_CV193		Clayburn	5	5	5	1	1	5	5	4.2
K_CV48		Clayburn	5	4	5	5	2	1	5	4.2
K_CV44		Clayburn	5	1	5	5	2	5	5	4.1
K_CV116		Clayburn	5	2	5	5	1	3	5	4.0
K_CV211		Clayburn	5	1	5	5	1	5	5	4.0
K_CV52		Clayburn	5	1	5	5	1	5	5	4.0
K_CV224		Clayburn	5	1	5	5	2	3	5	3.9
K CV133		Clayburn	5	4	5	1	1	3	5	3.9
K CV46		Clayburn	5	1	5	5	1	3	5	3.8
K CV135		Clayburn	5	1	5	1	1	4	5	3.5
K CV45		Clayburn	4	1	2	5	2	5	5	3.4
K CV49		Clayburn	4	1	2	5	2	5	5	3.4
K CV50		Clayburn	4	1	2	5	2	5	5	3.4
K CV37		Clayburn	4	1	2	5	2	5	5	3.4
K CV117		Clayburn	4	1	2	5	1	5	5	3.3
K CV84		Clayburn	4	1	2	5	1	5	5	3.3
K VL57 BDG		Clayburn	4	1	2	5	1	5	5	3.3
K CV83		Clayburn	4	1	2	5	1	5	5	3.3
K CV86		Clayburn	4	1	2	5	1	5	5	3.3
K VL51 BDG.1		Clayburn	4	1	2	5	1	5	5	3.3
K CV113		Clayburn	4	1	2	1	1	5	5	2.9
K CV115		Clayburn	4	1	2	1	1	5	5	2.9
K CV42		Clayburn	3	5	4	5	2	3	5	3.8
Urban Culvert Upgrades					-					
K CV89		Clayburn	3	2	4	5	2	5	5	3.5
K CV60		Clayburn	3	2	4	1	2	5	5	3.1
MARSHALL C7	CUL0152	Marshall	5	5	5	5	1	4	5	4.5
MARSHALL C9	CUL0034.1	Marshall	5	5	5	5	4	4	1	4.4
MARSHALL_C5	CUL0108.1	Marshall	5	5	5	5	4	3	1	4.3
MARSHALL C1	CUL0021.1	Marshall	5	5	5	5	4	3	1	4.3
MARSHALL C2	CUL0053.1	Marshall	5	5	5	5	4	3	1	4.3
MARSHALL_C3	CUL0055.1	Marshall	5	5	5	5	4	3	1	4.3
MARSHALL C4	CUL0090	Marshall	5	5	5	1	4	3	5	4.3
MARSHALL C6	CUL0139	Marshall	5	2	5	5	1	5	5	4.2
MARSHALL C11	CUL0088.1	Marshall	5	5	5	5	4	2	1	4.2
MARSHALL C12	CUL0087.1	Marshall	5	4	5	5	4	3	1	4.2
MARSHALL_C12	CUL0162	Marshall	5	2	5	5	4	3	5	4.2

Table E1 - 5 of 7

DRAINAGE MASTER PLAN

4

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Community Impacts	Economic Impacts	Environmental / Agricultrual Impact	Total Score
Urban Culvert Upgrades										
MARSHALL_C10	CUL0077.1	Marshall	5	2	5	5	4	3	1	3.9
MARSHALL_C13	CUL0175.1	Marshall	4	5	2	5	1	3	1	3.3
MARSHALL_C14	CUL0024	Marshall	4	5	2	1	4	3	5	3.6
MARSHALL_C15	CUL0085.1	Marshall	4	5	2	5	4	5	1	3.8
MARSHALL_C16	CUL086.1	Marshall	4	5	2	5	4	5	1	3.8
MARSHALL_C17	CUL0150	Marshall	4	5	2	5	1	2	5	3.6
DOWNES_PIPE_6A	114998	Downes	5	4	5	1	4	3	5	4.2
DOWNES PIPE 6C	893.1	Downes	5	5	5	1	4	2	5	4.2
DOWNES_PIPE_6B	902.1	Downes	5	5	5	1	4	1	5	4.1
DOWNES_PIPE_1	culv-1	Downes	5	5	5	1	1	4	1	3.7

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Economic Consideration	Environmental Impact	Total Score
Detention Pond									
Pond A		Downes	5	3	5	5	5	5	4.3
Pond C		Downes	5	3	5	5	5	5	4.3
Pond G		Downes	5	3	5	1	3	5	3.7
Pond Y		Downes	1	1	5	1	1	1	1.6
Pond Z		Downes	1	1	1	5	1	1	1.4
P13		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P14		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P21		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P40		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P49		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P50		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P52 and P53		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P20-1 and P20-2		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P51		Clayburn (Stoney)	5	5	5	5	5	5	4.6
P47		Clayburn	3	3	5	5	5	5	4.1
P12		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P18		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P19-1, P19-2, P19-3		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P24-1,P24-2, P24-3, P24-4		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P26-1, P26-2		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P36		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P39-1, P39-2		Clayburn (Stoney)	3	3	5	5	5	5	3.7
P1		Clayburn	3	3	5	5	5	5	3.7
P2		Clayburn	1	3	5	5	5	1	2.7
P3		Clayburn	1	3	5	5	5	1	2.7
P31		Clayburn (Stoney)	1	3	5	5	5	1	2.7
P32		Clayburn (Stoney)	1	3	5	5	5	1	2.7

Table E1 - 6 of 7

Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Economic Impacts	Agricultrual Impact	Total Score
Channel Upgrades			•		-	P	-	P	
Install Floodboxes	Clayburn Village	Matsqui/Clayburn Village	5	5	5	1	5	1	3.7
Install Flap gates	Clayburn Village	Matsqui/Clayburn Village	5	5	5	1	5	1	3.7
Construct North Berm Ch. 12710-12930, 0.5 m High Berms	Clayburn Village	Matsqui/Clayburn Village	5	5	5	1	3	1	3.7
Enlarge/Deepen Ch. 13323-13300	Clayburn Cr	Matsqui/Clayburn Creek	5	3	1	1	3	5	3.1
Enlarge/Deepen Ch. 13282-13086	Clayburn Cr	Matsqui/Clayburn Creek	5	3	1	1	3	5	3.1
Enlarge/Deepen Ch. 13076-12727	Clayburn Cr	Matsqui/Clayburn Creek	5	3	1	1	3	5	3.1
Enlarge/Deepen Ch. 12710-12574	Clayburn Cr	Matsqui/Clayburn Creek	5	3	1	1	3	5	3.1
Construct 100L/s Pump Station	Clayburn Village	Matsqui/Clayburn Village	5	3	3	1	3	1	2.7
Deepen Under Clayburn Bridge	Matsqui Sl	Matsqui Slough	5	3	1	1	5	5	3.3
Ch. 14284-14884	Matsqui Sl	Matsqui Slough	5	3	1	1	5	5	3.3
Enlarge/Deepen Ch. 14284-14212	Clayburn backwatered	Matsqui/Clayburn Creek	1	1	1	1	1	5	1.7
Enlarge/Deepen Ch. 14202-13825	Clayburn backwatered	Matsqui/Clayburn Creek	1	1	1	1	1	5	1.7
Enlarge/Deepen Ch. 13815-13333	Clayburn backwatered	Matsqui/Clayburn Creek	1	1	1	1	1	5	1.7
Farm Bridge Upgrade	Clayburn backwatered	Matsqui/Clayburn Creek	1	1	1	1	1	5	1.7
Rural Culvert Project List									
Culvert at Vye Rd on Saar Crk		Sumas	5	3	5	1	5	5	3.9
Culvert at Old Yale Rd on Arnold Slough		Sumas	1	1	3	1	3	5	2.1
Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Economic Consideration	Environmental Impact	Total Score
Bank Stabilization & Sediment Management									
Gill Creek Erosion Sites		Sumas Prairie	5	5	5	5	3	5	4.8
Fraser River at Matsqui		Fraser River	5	5	5	1	5	3	4.4
Horn Creek Bank Stabilization		Willband	5	3	5	5	1	5	4.4
T11_208		Marshall	5	5	3	5	5	3	4.4
T11_212		Marshall	5	5	3	5	5	3	4.4
T7_185		Marshall	5	5	3	5	5	5	4.2
T7_183		Marshall	5	3	3	5	5	5	4.0
Erosion at Matsqui Dyke from Erosion Arcs F & G		Matsqui	5	5	5	1	1	3	4.0
Clayburn Expand & Improve existing Dutra sediment trap		Clayburn	5	1	3	5	3	5	4.0
Prairie St Sediment Trap		Willband	5	1	3	5	5	3	4.0
Horn_BOA_BioEngineering		Willband	3	3	3	5	5	5	3.4
Horn_BOA_Sediment Trap/Basin		Willband	3	3	3	5	5	3	3.2
Horn Creek Storm Diversion		Willband	1	1	1	5	1	1	1.4
Clayburn Erosion Sites		Clayburn	1	1	1	3	5	3	1.8
Downes Erosion 8 sites		Downes	1	1	1	3	3	5	1.8
Project Type / List	Pipe / Culvert ID	Catchment	Technical Rating	Urgency	Risk / Consequence	Urban Containment Boundary	Economic Impacts	Agricultrual Impact	Total Score
Pump Station		Catchment							
			4	4	4	1	1	5	1.4
Barrowtown PS - Upgrades		Sumas				I		-	
Barrowtown PS - Upgrades Barrowtown PS - Backup Power		Sumas Sumas	1	1	1	1	1	5	1.4

Table E1 - 7 of 7

Appendix F

Dike Long Term Upgrades Cost Estimate

	Matsqui Dike Long-Term	opgrad		Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Reach 6	Reach 7	Total	
Item	Description	Unit	Unit Rate (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	KWL Assumptions
Matsqui	Dike											
General	Dike Upgrade											
1.1	Dike Fill	lin.m	1,500	1,716,000	1,305,000	3,735,000	1,500,000	1,845,000	3,960,000	4,011,000	18,072,000	Unit rate is for 1 m dike raise based on previous dike upgrade projects along the Lower Fraser. The cost includes dike fill, crest surfacing, topsoil, and seeding. Cost increases in Reach 1 and Reach 3 to account for space limitations.
1.2	Utilities	L.S.	1	0	0	200,000	10,000	310,000	45,000	200,000	765,000	
1.3	Seepage Mitigation - Toe Berm	cu.m	70	728,000	0	0	0	861,000	0	1,871,800	3,460,800	Gravel toe berm where dike height >4m.
1.4	Seepage Mitigation - Fill	cu.m	40	0	1,052,000	944,000	1,260,000	1,080,000	2,424,000	1,808,000	8,568,000	1 m of fill in seepage and sand boil areas identified during freshet.
1.5	Access & Roads	sq.m	100	40,000	20,000	60,000	60,000	20,000	120,000	20,000	340,000	Includes 5% grade tie-ins to existing roads and assumes all roads paved.
1.6	Turnouts	cu.m	60	0	0	0	0	0	0	54,144	54,144	Turnout ramps (6m wide for 20 m with 15 m tapers on either side)
1.7	Rail Crossings	each	200,000	200,000	0	0	200,000	0	0	200,000	600,000	Manual flood gates at rail crossings.
1.8	Drainage	L.S.	1	0	0	0	0	0	0	0	-	Drainage includes ditch relocation if required and small floodboxes.
2.1	Bank Protection	lin.m	4,200	0	2,310,000	2,940,000	630,000	0	See reach 7	10,000,000	15,880,000	Reach 7 cost estimate is based on \$10 million cost estimate the City is currently estimating for rock spur erosion mitigation as per NHC design (includes erosion arcs in Reach 6).
2.2	Habitat Mitigation and Compensation	L.S.	5% of above items	134,200	234,350	393,950	183,000	205,800	327,450	908,247	2,386,997	Estimated as 5% of total cost of items 1.1 to 1.8 and item 2.
3	Land Acquisition	sq.m	2	5,180	4,254	915	12,418	48	1,116	5,228	29,160	
4	Pump Stations	L.S.	NA	3,750,000	0	7,199,000	236,000	202,000	0	0	11,387,000	Pump station costs from Earthtec-AECOM 2008 Drainage Pump Station PSAB 3150 Study with 20% allowance for additional unaccounted items (decomissioning, fish- friendly pump station, water control).
SUBTOT	AL CONSTRUCTION (ROL	JNDED)		6,573,380	4,925,604	15,472,865	4,091,418	4,523,848	6,877,566	19,078,419	61,543,000	
CONSTR	UCTION CONTINGENCY	50%		3,286,690	2,462,802	7,736,433	2,045,709	2,261,924	3,438,783	9,539,210	30,771,500	
TOTAL C	ONSTRUCTION - EXCLUE	DING SE	ISMIC	9,860,070	7,388,407	23,209,298	6,137,126	6,785,771	10,316,349	28,617,629	92,314,500	
PROFES	SIONAL SERVICES ALLO	WANCE										
10% of C	onstruction Cost			986,007	738,841	2,320,930	613,713	678,577	1,031,635	2,861,763	9,231,450	
TOTAL A	MOUNT - EXCLUDING SE	ISMIC (excl. GST)	10,846,077	8,127,247	25,530,228	6,750,839	7,464,349	11,347,984	31,479,392	101,545,950	

Table F1: Matsqui Dike Long-Term Upgrading Class D Cost Estimate

				Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Reach 6	Reach 7	Total	
Item	Description	Unit	Unit Rate (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	KWL Assumptions
Seismic	Performance Improve	ment										
Seismic P	erformance Improvement	cu.m	15	3,900,000	3,262,500	7,837,500	3,750,000	4,612,500	9,900,000	40,110	33,302,610	10 m strips of ground densification on each side of the dike to 12.5 m depth.
SEISMIC	CONSTRUCTION CONTI	NGENC	Y 50%	1,950,000	1,631,250	3,918,750	1,875,000	2,306,250	4,950,000	20,055	16,651,305	
TOTAL SI	EISMIC CONSTRUCTION			5,850,000	4,893,750	11,756,250	5,625,000	6,918,750	14,850,000	60,165	49,953,915	
PROFESS	SIONAL SERVICES ALLC	WANCE										
10% of Co	onstruction Cost			585,000	489,375	1,175,625	562,500	691,875	1,485,000	6,017	4,995,392	
TOTAL SI	EISMIC AMOUNT (excl. 0	ST)		6,435,000	5,383,125	12,931,875	6,187,500	7,610,625	16,335,000	66,182	54,949,307	
Grand T	otal with Seismic Perf	ormanc	e Improveme	nt								
TOTAL A	MOUNT WITH SEISMIC (excl. GS	T) ROUNDED	17,281,077	13,510,372	38,462,103	12,938,339	15,074,974	27,682,984	31,545,574	156,495,000	

\bbyfs1 kwl ca\0000-0999\0500-0599\510-152\700-CostEstimate\DikeAssessment\(20180606_DikeUpgrade_CostEstimate.xls)Tbl9-MatsquiCost Estimate

Reach 1 Reach 2 Reach 3 Total Item Unit Unit Rate (\$) **KWL** Assumptions Description Cost (\$) Cost (\$) Cost (\$) Cost (\$) Vedder Dike General Dike Upgrade Unit rate is for 1 m dike raise based on previous dike upgrade projects along the Lower Fraser. 1,500 3,930,000 2,610,000 561,000 1.1 Dike Fill lin.m 7,101,000 The cost includes dike fill, crest surfacing, topsoil, and seeding. 1.2 Utilities 1 each 0 0 1.3 Seepage Mitigation - Toe Berm 70 1,834,000 1,218,000 154,000 3,206,000 Gravel toe berm where dike height >4m. cu.m 40 1.4 Seepage Mitigation - Fill cu.m 0 0 No noted seepage locations Access & Roads 100 210,000 90,000 30,000 1.5 330,000 Includes 5% grade tie-ins to existing roads and assumes all roads paved. sq.m 1.6 Turnouts 60 150,522 67,878 0 218,400 Turnout ramps (6m wide for 20 m with 15 m tapers on either side) cu.m 200,000 1.7 Rail Crossings each 0 0 -1.8 Drainage lin.m NA 0 Drainage includes ditch relocation if required and small floodboxes. Ω -Assuming 100% of Vedder dike canal/river slope will have riprap bank protection 0.5 m thick at 2.1 Bank Protection lin.m 420 1,100,400 730,800 0 1,831,200 2H:1V slope. L.S. 37,250 Habitat Mitigation and Compensation 361,246 235,834 634,330 Estimated as 5% of total cost of items 1.1 to 1.8 and item 2. 2.2 5% of above items 2 3 Land Acquisition 0 sq.m Ω -Pump station costs from Earthtec-AECOM 2008 Drainage Pump Station PSAB 3150 Study with 4 Pump Stations L.S. NA 0 0 27,352,000 27,352,000 20% allowance for additional unaccounted items (decomissioning, fish-friendly pump station, water ontrol). SUBTOTAL CONSTRUCTION (ROUNDED) 4,952,512 28,134,250 7,586,168 40,673,000 CONSTRUCTION CONTINGENCY (50%) 3,793,084 2,476,256 14,067,125 20,336,500 TOTAL CONSTRUCTION - EXCLUDING SEISMIC 11,379,251 7,428,768 42,201,375 61,009,500 PROFESSIONAL SERVICES ALLOWANCE 10% of Construction Cost 742,877 1,137,925 4,220,138 6,100,950 TOTAL AMOUNT - EXCLUDING SEISMIC (excl. GST) 12,517,177 8,171,645 46,421,513 67,110,450

Table F2: Vedder Dike Long-Term Upgrading Class D Cost Estimate

DRAINAGE MASTER PLAN

Table F2 - 1 of 2

				Reach 1	Reach 2	Reach 3	Total	
Item	Description	Unit	Unit Rate (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	KWL Assumptions
Seismic	Performance Improvement							
Seismic P	erformance Improvement	cu.m	15	9,825,000	6,525,000	825,000	17,175,000	10 m strips of ground densification on each side of the dike to 12.5 m depth.
SEISMIC	CONSTRUCTION CONTINGENCY 50%			4,912,500	3,262,500	412,500	8,587,500	
TOTAL SE	EISMIC CONSTRUCTION			14,737,500	9,787,500	1,237,500	25,762,500	
PROFESS	SIONAL SERVICES ALLOWANCE							
10% of Co	nstruction Cost			1,473,750	978,750	123,750	2,576,250	
TOTAL SE	TOTAL SEISMIC AMOUNT (excl. GST)				10,766,250	1,361,250	28,338,750	
Grand To	otal with Seismic Performance Imp	rovement						
TOTAL A	MOUNT WITH SEISMIC (excl. GST) ROU	28,728,427	18,937,895	47,782,763	95,449,000			

\bbyfs1.kwl.ca\0000-0999\0500-0599\510-152\700-CostEstimate\DikeAssessment\[20180606_DikeUpgrade_CostEstimate.xls]Tbl9-MatsquiCost Estimate

Table F3: Sumas Dike Long-Term Upgrading Class D Cost Estimate

Table F3	: Sumas Dike Long-Term Upgrading Clas	ss D Cos	t Estimate	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Reach 6	Reach 7	Total	
ltem	Description	Unit	Unit Rate (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	KWL Assumptions
Sumas I	Dike											
General	Dike Upgrade											
1.1	Dike Fill	lin.m	1,500	5,820,000	3,180,000	2,040,000	3,840,000	4,320,000	6,055,500	411,000	25,666,500	Unit rate is for 1 m dike raise based on previous dike upgrade projects along the Lower Fraser. The cost includes dike fill, crest surfacing, topsoil, and seeding. Minor cost increase in Reach 6 to account for space limitations.
1.2	Utilities	L.S.	1	65,000	0	250,000	75,000	0	0	0	390,000	
1.3	Seepage Mitigation - Toe Berm	cu.m	70	0	0	0	0	0	0	0	-	Gravel toe berm where dike height >4m.
1.4	Seepage Mitigation - Fill	cu.m	40	0	0	0	0	0	0	0	-	No noted seepage locations.
1.5	Access & Roads	sq.m	100	112,000	0	70,000	42,000	14,000	42,000	14,000	294,000	Includes 5% grade tie-ins to existing roads and assumes all roads paved.
1.6	Turnouts	cu.m	60	83,340	39,753	0	41,307	98,809	97,499	0	360,708	Turnout ramps (6m wide for 20 m with 15 m tapers on either side)
1.7	Rail Crossings	each	200,000	0	0	0	0	0	0	0	-	
1.8	Drainage	L.S.	1	204,000	96,000	157,000	124,000	0	124,000	0	705,000	Drainage includes replacement of several small floodboxes.
2.1	Bank Protection	lin.m	735	0	1,385,067	199,920	1,724,800	1,693,440	1,798,300	0	6,801,527	Assuming bank protection not required for Arnold Slough Reach 1.
2.2	Habitat Mitigation and Compensation	L.S.	5% of above items	314,217	235,041	135,846	292,355	306,312	405,865	21,250	1,710,887	Estimated as 5% of total cost of items 1.1 to 1.8 and item 2.
3	Land Acquisition	sq.m	2	85,698	50,010	17,112	36,034	41,683	68,097	0	298,633	
4	Pump Stations	L.S.	NA	0	0	0	0	0	0		-	Pump station costs from Earthtec-AECOM 2008 Drainage Pump Station PSAB 3150 Study with 20% allowance for additional unaccounted items (decomissioning, fish-friendly pump station, water control).
SUBTOT	AL CONSTRUCTION (ROUNDED)			6,684,255	4,985,871	2,869,878	6,175,496	6,474,244	8,591,261	446,250	36,227,000	
CONSTR	UCTION CONTINGENCY (50%)			3,342,127	2,492,935	1,434,939	3,087,748	3,237,122	4,295,630	223,125	18,113,500	
TOTAL C	ONSTRUCTION - EXCLUDING SEISMIC			10,026,382	7,478,806	4,304,817	9,263,244	9,711,367	12,886,891	669,375	54,340,500	
PROFES	SIONAL SERVICES ALLOWANCE											
10% of C	onstruction Cost			1,002,638	747,881	430,482	926,324	971,137	1,288,689	66,938	5,434,050	
TOTAL A	MOUNT - EXCLUDING SEISMIC (excl. G	ST)		11,029,020	8,226,686	4,735,298	10,189,569	10,682,503	14,175,580	736,313	59,774,550	

Table F3 - 1 of 2

				Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Reach 6	Reach 7	Total			
ltem	Description	Unit	Unit Rate (\$)	Cost (\$)	Cost (\$)	Cost (\$)	KWL Assumptions							
Seismic	Performance Improvement													
Seismic P	erformance Improvement	cu.m	15	14,550,000	7,950,000	5,100,000	9,600,000	10,800,000	13,762,500	450,000	62,212,500	10 m strips of ground densification on each side of the dike to 12.5 m depth.		
SEISMIC	CONSTRUCTION CONTINGENCY 50%			7,275,000	3,975,000	2,550,000	4,800,000	5,400,000	6,881,250	225,000	31,106,250			
TOTAL S	EISMIC CONSTRUCTION			21,825,000	11,925,000	7,650,000	14,400,000	16,200,000	20,643,750	675,000	93,318,750			
PROFES	SIONAL SERVICES ALLOWANCE													
10% of Co	onstruction Cost			2,182,500	1,192,500	765,000	1,440,000	1,620,000	2,064,375	67,500	9,331,875			
TOTAL S	EISMIC AMOUNT (excl. GST)			24,007,500	13,117,500	8,415,000	15,840,000	17,820,000	22,708,125	742,500	102,650,625			
Grand T	Grand Total with Seismic Performance Improvement													
TOTAL A	MOUNT WITH SEISMIC (excl. GST) ROU	NDED		35,036,520	21,344,186	13,150,298	26,029,569	28,502,503	36,883,705	1,478,813	162,425,000			

 $\label{eq:listication} \label{eq:listication} \label{eq:listicatio$

Appendix G

Stormwater Criteria

Category	City of Maple Ridge	Township & City of Langley	City of Surrey	City of Burnaby	Corp of Delta
Flood and Erosion Pr	otection				
Minor Drainage System	1:10-year event ¹	1 in 5-year storm ¹ 1 in 10-year storm ⁴	• 1:5-year event ¹	• 1:10-year event. ¹	1:10-year event typically. ¹ 1:5-year for low density residential areas; 1:25-year for high value comm / ind dev. ¹
Major Drainage System	1:100-year event ¹	1 in 100-year storm ^{1,4}	• 1:100-year event ¹	• 1:100-year event. ¹	1:100-year event for floodway routing. ¹ 1:25-year for dyked or reclaimed land. ¹
Lowland		ARDSA⁵	ARDSA ²		ARDSA ²
Environmental Protec	tion				
Volume Reduction	< 50% Mean Annual Rainfall (MAR) ¹ 25 mm in 24 hours infiltration facilities	25 mm in 24 hours infiltration facilities ¹			
Rate Control - Control post-development flows to pre-development levels	Control runoff from larger events – From 50% of MAR to MAR ¹ Minor storm released at the 1:2-year pre- development rate. ¹ Major system release at the 1:10-year pre- development rate for upland areas. ¹	1 in 2-year, 1 in 5-year, 1 in 100-year events. ¹ 1:1:2-year & 1:10-year for upland areas. ¹ Limit post-development 1:2-year design storm to 50% of the 1:2-year natural peak flow.	 The more stringent of:¹ 1:5-year post-development flow to 50% of the 1:2-year post development rate; or 1:5-year post-development flow to 5-year pre-development flow rate 	• 5-year storms. ¹	 On fish bearing stream, up to & including 10- year storm.¹
Water Quality Treatment	TSS level must not be > 25 mg/L during dry weather & < 75 mg/L during wet season; turbidity levels must not be > 20 NTU, and the pH of water discharged should fall between 6.0 and 9.0.			 comply with City, federal, provincial and regional statutes and guidelines.^{2,3} 	
Erosion & Sediment Control	ESC Plan (Schedule C ²)	Lesser of turbidity of 25 NTU except within 24 hours of a significant rainfall event (meets or exceeds intensity of 25 mm in 24-hour period) at which time the turbidity can be up to 100 NTU ²	Follow Erosion control BMPs (Appendix B ³)		
Riparian Setbacks		Class A watercourse, excluding Class A roadside watercourses, a min width of 30 m. ³ Class B natural watercourses, excluding Class B constructed & roadside watercourses, a min width of 15 m. ³ Agricultural Land Reserve lands are excluded from riparian setback. ³	Land Development Guidelines for the Protection of Aquatic Habitat ⁴	Protection of riparian areas in setbacks of 5 to 30 metres on either side of streams, subject to limitations. ⁴	Delta Streamside Protection and Enhancement Areas Bylaw ³ and Riparian Areas Regulation.
Bylaws	 City of Maple Ridge Design Criteria Manual, 2015 Maple Ridge Watercourse Protection Bylaw No. 6410 – 2006 Maple Ridge Official Community Plan Bylaw No. 7060-2014 	 Township of Langley Subdivision and Development Servicing Bylaw No. 4861, 2011 Township of Langley Erosion & Sediment Control Bylaw No. 4381, 2006 Township of Langley OCP Bylaw No. 1842, 1979 & Amendment (Streamside Protection) Bylaw No. 4485, 2006 City of Langley Subdivision and Development Servicing Bylaw, 2008, No. 2744. ARDSA = Agriculture and Rural Development Subsidiary Agreement. 	Criteria Manual, 2016.	 City of Burnaby Engineering Department Design Criteria Manual, 2014 Burnaby Rainwater Management Design Guidelines Burnaby Watercourse Bylaw 1988 (Bylaw No. 9044) Burnaby Zoning Bylaw 1965, Section 6 – Supplementary Regulations. 	 Corporation of Delta Stormwater Management Design Manual, February 1989, Revised January 1994. ARDSA Agricultural Drainage Criteria, 2002 Corporation of Delta Development Permit Area to Establish Streamside Protection and Enhancement Areas Bylaw No. 6349, 2005.

Table G1: Comparison of Adjacent Jurisdiction Stormwater Management Criteria

Appendix H

Detention Facility Management

Table H1: I	Detention Pon	nd Database																										
City	Project	Facility						GIS	GIS Volume	Infiltration	Control		Right of Way		GIS Area	As-Built or Report	Contributing	As-Built or	RIM Elev.	Storage	Orifice	Orifice	Overflow	Overflow	Max	10yr Max	100yr Max	Unit Flow
ID	ID	Туре	Sub Type	Owner	Capitalization Date	House #	Street Name	Volume (m ³)	Assumed	System	Structure	Type of Control	Plan #	As-Built	(m ²)	Facility Area	Catchment Area (ha)	Report Volume (m ³)	(m)	Invert (m)	Size (mm)	Invert (m)	Туре	Width (m)	Water Level (m)	Outflow (m ³ /s)	Outflow (m ³ /s)	(m ³ s)
Pond with	Completed De	etailed Studies	S					()								(m ²)		Volume (m)			()					(11173)	(11173)	
117454	А	Pond	Dry Pond	Municipal	6/30/1983	3700 Q	UALICUM ST	1061.0	No	No	No		66856	Yes	566.0	680.0	10.90									0.623	0.72	57.16
117439	В	Pond	Wet Pond	Private	6/30/1996		OWNES RD	1222.0	Yes	No	No		28081	Yes	1917.6	500.0	2.30									0.061	0.251	26.52
117453 117456	C	Pond Pond	Dry Pond Dry Pond	Municipal Municipal	6/30/1996 6/30/1992		LEARBROOK RD	6680.0 770.0	No Yes	No Yes	No No		N/A N/A	Yes Yes	6800.4 1872.6	7300.0 2300.0	31.25 1.00									0.823	0.885 2.611	26.34 2403.00
117430	E	Pond	Dry Pond	Private	6/30/2005		OWNES RD	7.0	No	No	No		N/A NO	Yes	144.4	2300.0	1.00									2.403	2.011	2403.00
117430	E	Pond	Dry Pond	Private	6/30/1997		OWNES RD	322.0	No	No	No		LMP36273	Yes	797.2													(
117452	G	Pond	Dry Pond	Municipal	6/30/1997		OWNES RD	3802.0	No	No	No		NO	Yes	15506.9	3168.0	13.90									0.067	0.109	4.82
117463 117459	H	Pond Pla	Wet Pond lying Field or Rain Garden	Private Private	6/30/1992 6/30/1992		IDGEVIEW DR	3747.9 1671.4	Yes Yes	No No	No No		5455 NO	Yes	2295.7 1266.4	2600.0 13200.0	6.70 3.00									0.008	0.009	1.19 5.67
117439	J	Tank	Chamber	Municipal	6/30/1992		AGNER DR	2517.0	No	No	Yes		40419	Yes	1433.1	1085.0	12.10									0.395	0.903	32.64
117457	К	Pond	Dry Pond	Municipal	6/30/1999	3600 T(OWNLINE RD	3800.0	No	No	No		40341	Yes	1711.9	3800.0	4.30									0.019	0.098	4.42
117464	М		lying Field or Rain Garden	Municipal	6/30/1985		PARWOOD ST	4260.0	Yes	No	No		N/A	No	8728.0	2000.0	13.80									0.984	1.163	71.30
117425 117443	P1 P10-1	Pond Pond	Wet Pond Playing Field	Municipal Private	6/30/2006 6/30/1989		LAUSON BLVD	4650.0 4160.0	No Yes	No No	No No	Flow Control Manhole Flow Control Manhole	NO NO	Yes	2899.9 4129.6	2899.9 4129.6	9.94 4.31	9995.2 1298.2	151.7 66.4		115 115	148.0 61.9	Pipe None	0.375	151.7	0.283	0.079	7.95 65.72
117443	P10-1	Pond	Playing Field	Private	6/30/1989		LD CLAYBURN RD	5184.0	Yes	No	No	Flow Control Manhole	NO	No	5169.6	5169.6	4.31	1290.2	66.4		115	61.9	None			0.283		65.66
117115	P11	Tank	Chamber	Municipal	6/30/2004	35314 M	ICKINLEY DR	790.0	No	No	No	Flow Control Manhole	NO	Yes	268.5	268.5	4.05	792.1			375	79.5	Pipe	0.375	82.9	0.302		74.49
117121	P12	Tank	Chamber	Municipal	6/30/2003		AKISKA CT	442.0	No	No	No	Flow Control Manhole	P02999	Yes	351.4	351.4	1.60	429.1			60	104.8	None	4.05		0.016		9.98
117451 117455	P13 P14	Pond Pond	Wet Pond Dry Pond	Municipal Municipal	6/30/1989 6/30/1989		ICKINLEY DR ANDY HILL RD	900.0 2100.0	Yes Yes	No No	No No	Flow Control Manhole Flow Control Manhole	87340 N/A	No No	147.4 168.4	147.4 168.4	9.53 6.09	964.7 116.4			444 197/343	103.0 79.9	Weir Pipe	1.05 0.375	104.0 81.9	0.425		44.58 46.62
117433	P14	Tank	Chamber	Municipal	6/30/1989		ANDY HILL RD	2550.0	Yes	No	Yes	Orfice Plate and Flap Gate	N/A	No	144.2	144.2	35.22	5.8			526	90.1	None	0.010	01.0	0.204		17.55
117128	P16	Tank	Chamber	Municipal	6/30/1991		ICKINLEY DR	651.0	Yes	No	Yes	Orfice Plate and Flap Gate	574	Yes	185.9	185.9	4.55	521.0			75	90.4	Weir	5	93.5	0.122		26.86
117120	P17 P18	Tank	Chamber	Municipal	6/30/1998 6/30/2004	35702 M 3532 M		1584.0 710.0	Yes	No	Yes	Flow Control Manhole	39543	Yes	689.5	689.5	20.22	1589.3	114.9		77	145.0	Weir	2.25 3.95	148.6 114.9	0.156	0.322	15.93 82.67
117134 117130	P18 P19-1	Tank Tank	Chamber Chamber	Municipal Municipal	6/30/2004		ICKINLEY DR ASSANO TERRACE	649.0	No No	No No	No Yes	Flow Control Manhole Flow Control Manhole in tank	P07664 37059	Yes Yes	305.6 212.4	305.6 212.4	9.42	730.0 745.5	114.9 151.8		102	148.0	Pipe	0.45	114.9	0.156		64.22
117131	P19-2	Tank	Chamber	Municipal	6/30/1998		ASSANO TERRACE	649.0	No	No	Yes	Flow Control Manhole in tank	37059	Yes	212.4	212.4	9.42	745.5	154.9		102	151.1	Pipe	0.45	154.8	0.863		91.64
117132	P19-3	Tank	Chamber	Municipal	6/30/1998		ASSANO TERRACE	649.0	No	No	Yes	Flow Control Manhole in tank	37059	Yes	212.4	212.4	9.42	745.5	158.0		102	154.2	Pipe	0.45	157.9	0.728		77.22
117105 117135	P2	Tank	Chamber	Municipal	6/30/1997 6/30/1998		HEARWATER DR	965.0	No	No	Yes	Flow Control Manhole	33808 39397	Yes	534.5 132.7	534.5	4.93 5.88	969.1			83	47.6 134.1	Weir	1.05	50.3	0.404		81.98 10.88
117135	P20-1 P20-2	Tank Tank	Chamber Chamber	Municipal Municipal	6/30/1998		HATCOM RD	728.0 728.0	No No	No Yes	Yes Yes	Flow Control Manhole in tank Flow Control Manhole in tank	39397	Yes Yes	132.7	132.7 133.5	3.83	405.2 1273.8			58 58	134.1	Pipe Pipe	0.45	137.2 138.9	0.064		10.88
117137	P20-3	Tank	Chamber	Municipal	3/3/2008		/HATCOM RD	1483.0	No	No	No	Flow Control Manhole	B34916	Yes	353.7	353.7	4.20	401.8			42	133.4	Pipe	0.45	136.3	0.144		34.29
117142	P21	Tank	Chamber	Municipal	6/30/1999	3391 M	ICKINLEY DR	858.0	No	No	No	Flow Control Manhole	40302	Yes	322.4	322.4	1.57	552.4			50	112.1	None, waterproof			0.064		40.92
117473	P22	Pond	Settling Pond	Private	6/30/2005	35782 W	/ESTVIEW BLVD	1278.0	No	No	No	Flow Control Manhole	NO	Yes	728.7	728.7	4.75	3490.5	242.0		84	237.9	flap gate Pipe	0.525	241.7	0.013		2.73
117483	P23	Pond	Settling Pond	Private	6/30/2006		OXWOOD CT	590.0	No	No	No	Flow Control Manhole	NO	Yes	630.8	630.8	27.89	819.2	228.0		74	226.2	Pipe	0.9	227.6	0.730		26.17
117151	P24-1	Tank	Chamber	Municipal	6/30/2000		WEEDSMUIR DR	702.0	No	No	Yes	Flow Control Manhole in tank	34222	Yes	238.3	238.3	5.85	721.1			84	110.4	Pipe	0.3	113.3	0.223		38.11
117150 117149	P24-2 P24-3	Tank Tank	Chamber Chamber	Municipal Municipal	6/30/2000 6/30/2000		WEEDSMUIR DR	98.0 314.0	No No	No No	Yes Yes	Flow Control Manhole in tank Flow Control Manhole in tank	45264	Yes Yes	41.9 110.0	41.9 110.0	5.70 5.80	119.0 345.8	135.5	119.4	86 84	113.8 116.7	Pipe Pipe	0.3	117.0 120.3	0.060		10.53 14.50
117149	P24-3	Tank	Chamber	Municipal	6/30/2000		WEEDSMUIR DR	403.0	No	No	Yes	Flow Control Manhole in tank	45264	Yes	139.3	139.3	5.74	415.1			84	119.9	Pipe	0.3	120.5	0.004		19.17
117162	P25	Tank	Chamber	Municipal	6/30/2001		/ELLS GRAY AVE	1110.0	No	No	No	Flow Control Manhole	NO	Yes	521.2	521.2	12.73	1140.8			80	94.0	None			0.192		15.08
117155	P26-1	Tank	Chamber	Municipal	6/30/1998		/HATCOM RD	1335.0	No	No	Yes	Flow Control Manhole in tank	N/A	Yes	413.3	413.3	11.59	1678.2			105	138.0	2 Pipes	0.525	140.4	0.612		52.81
117156 116679	P26-2 P27-1	Tank Infiltration	Chamber Trench	Municipal Municipal	6/30/1998 6/30/1993		/HATCOM RD ATEMAN RD	1335.0 5.8	No Yes	Yes Yes	Yes No	Flow Control Manhole in tank Flow Control Manhole	N/A N/A	Yes Yes	421.7 173.0	421.7 173.0	11.59 15.36	1613.6 2914.7	7.1		105 132	136.0 3.7	2 Pipes Pipe	0.525	137.2 7.0	0.546		47.12 4.88
241896	P27-2	Pond	Dry Pond	Municipal	6/30/1993		ATEMAN RD	3560.0	Yes	Yes	No	0	N/A	Yes	5752.2	5752.2	4.69	0.0	7.1		152	5.1	T ipe	0.0	1.0	0.070		4.27
116681	P27-3	Infiltration	Trench	Municipal	6/30/1993	34700 H	EARTHSTONE CT	5.2	Yes	Yes	No	Flow Control Manhole	N/A	Yes	146.0	146.0	4.60	2425.4	9.3		84	5.4	Pipe	0.45	9.0			
117437	P27-4	Pond	Dry Pond	Municipal	6/30/1993		EARTHSTONE CT	2805.0	Yes	Yes	No	0 Flaw Control Manhala	N/A	Yes	2806.9	2806.9	4.60	0.0			470	4.0	Dine	0.0		0.070		5.00
117433 116683	P28 P29-1	Pond Infiltration	Dry Pond Trench	Municipal Private	6/30/1993 6/30/1993		ARTNELL PL	3641.0 76.8	No Yes	Yes Yes	No No	Flow Control Manhole Flow Control Manhole	N/A NO	No Yes	6157.4 60.0	6157.4 60.0	14.10 0.32	6040.6 0.0			172 55	4.2 44.5	Pipe Weir	0.2	6.6 47.7	0.076		5.39 6.17
117441	P29-2	Pond	Playing Field	Private	6/30/1993		LD CLAYBURN RD	71.5	Yes	No	No	None-further down below 29-	NO	Yes	5860.2	5860.2	0.32	4170.4		Goe	es into P 2					0.002		6.17
117106	P3	Tank	Chamber	Municipal	6/30/1992		ELANGER DR	1150.0	No	No	No	1 Flow Control Manhole	2484	Yes	468.7	468.7	5.95	1156.8			_						0.103	17.30
117116	P31	Tank	Chamber	Municipal	6/30/1995		OOTENAY DR	1133.9	No	No	Yes	Flow Control Manhole	21933	Yes	526.9	526.9	3.91	1138.6			88	39.8	Weir	2.5	42.5	0.052		13.29
117119	P32	Tank	Chamber	Municipal	6/30/2001	3841 TE		2345.0		No	No	Flow Control Manhole	48670	Yes	975.2	975.2	8.47	2347.9								0.372		43.94
117450 117122	P33 P35	Pond Tank	Playing Field Chamber	Municipal Municipal	6/30/1993 6/30/1997		XBURY AVE	1200.0 267.0	No No	No No	No No	Flow Control Manhole Flow Control Manhole	NO 32322	No Yes	2020.8 203.1	2020.8 203.1	6.49 1.48	1213.0 261.5	47.6		120 42	46.0 71.7	None None			0.046		7.08
116688		Infiltration	Trench	Municipal	6/30/1997		XBURY AVE	98.7	No	Yes	No	Flow Control Manhole	N/A	No	146.6	146.6	2.17	0.0			171	50.5	Pipe	0.375	52.8	0.210		96.69
116698	P39-1	Infiltration	Trench	Private	6/30/1987		ERNON TERRACE	200.0	Yes	Yes	No	Flow Control Manhole	NO	No	369.0	369.0	8.54	0.0			93/220	66.6	Pipe	1.219	69.1	0.302		35.36
116699		Infiltration	Trench	Municipal	6/30/1987		292 VERNON TERRACI		Yes	Yes	No	Flow Control Manhole	NO	No	281.7	281.7	8.54	0.0			93/220	66.6	Pipe	1.219	69.1	0.302		35.35
117108 117478	P4 P40	Tank Pond	Chamber Playing Field	Municipal Private	6/30/2001 6/30/1995		IRDALE AVE	3130.0 2030.0	No No	Yes Yes	No No	Flow Control Manhole Flow Control Manhole	50962 NO	Yes Yes	727.2 6029.3	727.2 6464.3	3.52 3.52	3137.1 2536.1			91 72	52.6 68.6	Pipe None	0.45	56.3	0.027		7.76
117478	P40 P43-1	Pond	Settling Pond	Private	6/30/2012		TRAITON RD	1028.0	Yes	No	No	Flow Control Manhole	B21592	Yes	1595.6	1688.0	5.57	1810.1			42	12.8	Pipe	0.25	15.1	0.130	0.013	2.34
116675	P43-2	Infiltration	Trench	Private	6/30/2012	35131 S	TRAITON RD	232.0	No	Yes	No	Flow Control Manhole	EPP22714	Yes	237.5	237.5	2.12	0.0	15.0		200	13.9	Pipe	0.2	15.0	0.257		121.23
117112	P45	Tank	Chamber	Private	6/30/2005	-	36260 MCKEE RD	516.0	No	No	No	Flow Control Manhole	BCP22983	Yes	258.9	255.9	4.76	0.0			75	186.3	None				0.092	19.33
117114 117426	P46 P47	Tank Pond	Chamber Wet Pond	Municipal Municipal	6/30/2003 6/30/2005		UCKINGHAM DR TRAITON RD	2142.0 930.0	No No	No No	No No	Flow Control Manhole Flow Control Manhole	BCP10384 NO	No Yes	726.2 259.8	726.2 259.8	14.65 18.36	2141.4 329.5	81.7		115	77.0	Pipe	0.6	81.6		0.315	21.50 16.29
117420	P47 P48-1	Tank	Chamber	Private	6/1/2012	35676 M		145.7	No	No	Yes	Flow Control Manhole	B35809	Yes	88.2	80.8	1.70	137.4	51.7		42	145.5	Pipe	0.8	148.1	0.016	0.200	9.41
117124	P48-2	Tank	Chamber	Private	6/1/2012	35626 M		145.7	No	No	Yes	Flow Control Manhole	B38509	Yes	86.5	80.9	1.70	137.4			42	146.7		0.3	149.4	0.018		10.59
117123	P48-3	Tank	Chamber	Private	6/1/2012	35676 M		145.7	No	No	Yes	Flow Control Manhole	B38509	Yes	86.5	80.9	1.37	137.4			42	147.9	Pipe	0.3	150.5	0.029		21.18
117127	P49	Tank	Chamber	Private	6/1/2012	35626 M	ICKEE RD	97.0	No	No	Yes	Flow Control Manhole	B38509	Yes	100.9	80.7	0.16	113.9			23	142.4	Pipe	0.3	144.2	0.001		7.36

DRAINAGE MASTER PLAN

Table H1 - 1 of 2

CITY OF ABBOTSFORD Drainage Master Plan Final Report June 2018

Import Import<	City ID	Project ID	Facility Type Detailed Stud	Sub Type	Owner	Capitalization Date	House # Street Name	GIS Volume (m ³)	GIS Volume Assumed	Infiltration System	Control Structure	Type of Control	Right of Way Plan #	As-Built	GIS Area (m ²)	As-Built or Report Facility Area (m ²)	Contributing Catchment Area (ha)	As-Built or Report Volume (m ³)	RIM Elev. (m)	Storage Invert (m)	Orifice Size (mm)	Orifice Invert (m)	Overflow Type	Overflow Width (m)	Max Water Level (m)	10yr Max Outflow (m ³ /s)	100yr Max Outflow (m ³ /s)	Unit Flow (m ³ s)
NTM Ref General Genera General General			-		Municipal	6/30/2003	4326 PIONEER CT	333.0	No	No	No	Elow Control Manhole	53504	No	303.0	303.0	0.89	336.3			38	6.1	None				0.013	14.27
Image Dip Lot Dip Lot <thdip lot<="" th=""> <thdip lot<="" th=""> <thdip< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>145.4</td><td>0.004</td><td>0.010</td><td>8.58</td></thdip<></thdip></thdip>	-																							3	145.4	0.004	0.010	8.58
No. No. <td></td> <td></td> <td>+ +</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.45</td> <td></td> <td></td> <td></td> <td>32.89</td>			+ +														-							0.45				32.89
Impo Sm Constant Band Solution of the second			-	,	•																							
Inter Prof Prof Prof Prof P	117138																0.17									0.012		71.43
The Fe	117427	P6	Pond	Wet Pond	Municipal	6/30/1997	4001 OLD CLAYBURN RD	2720.0	Yes	No	No	Flow Control Manhole	NO	Yes	1560.1	1560.1	47.56	2809.8	13.6		305	10.9	Orifice	300	13.4	0.751		15.79
1 0 Tak Common Norke 0 Norke Norke Norke Norke <	117428	P7	Pond	Wet Pond	Municipal	6/30/2005	3800 GOLF COURSE DR	1200.0	No	No	Yes	Flow Control Manhole	NO	Yes	1253.4	1253.4	4.17	1640.3	155.6		68	155.3	Weir	0.98	156.6		0.088	21.09
Thick Change Change Control in the law of the l	117431	P8	Pond	Playing Field	Municipal	6/30/1989	3900 OLD CLAYBURN RD	560.0	No	No	No	Flow Control Manhole	N/A	Yes	718.1	718.1	27.25	761.8			165	51.3	None			0.216		7.93
Thick V <td></td> <td>Q</td> <td>Tank</td> <td>Chamber</td> <td>Municipal</td> <td>6/30/2004</td> <td></td> <td></td> <td>No</td> <td>No</td> <td>No</td> <td></td> <td>P11238</td> <td>Yes</td> <td></td> <td>58.89</td>		Q	Tank	Chamber	Municipal	6/30/2004			No	No	No		P11238	Yes														58.89
TWO Num		Т	-																									28.18
CTUME Bits Paral Markau Markuu Markuu Markuu		W																										61.60
17108 8.80 Nev Weinhald Make Add No. No. No. No.		X														5700.0				-								80.00
175% 100 Tech Pack Option Market Market Market Markt <	-									-			83180												-			7.75
T1746 Bits Proc Dyring Bits Proc Disp Bits Disp Disp Disp Disp <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>B44500</td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td>Orifice</td><td>0.375</td><td></td><td></td><td></td><td>2.00</td></th<>													B44500			 							Orifice	0.375				2.00
Object Object<									-	-	-											-	Orifica	0.45				3.24 21.26
17176 50/6 Pord Pord <t< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>72986</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>21.26</td></t<>				,							-		72986										-		-			21.26
171200 9.007 Prod Marka Definition Definition <thdefinit< th=""> <thdefinit< th=""> <thdefiniti< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>80862</td><td>-</td><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>49.06</td></thdefiniti<></thdefinit<></thdefinit<>									-	-			80862	-		1			-				-		-	-	-	49.06
17178 SUG Prod Wein Prod Mercine 31391 Mercine Prod 21390 Prod SUB Prod S				,					-		-				-							-	-					21.32
11171 UND_F Table Oracles Manage 930794 2777 PULL OTH PULL P								-	-	-	-					1							-					1.35
17177 5U:0 Train Chemeser Manegal 60.2007 232 BIC-GRO FM 102 N0		SU09 ?	1 1								-						-		_	_								2.62
117193 5U11 Purd Dur Pord Manciga 6030198 583 TMPALARS 7.20 NO	117317		Tank	Chamber	Municipal	6/30/2007		132.0	NO	NO	NO		B27095	VES	57.5		0.4076	132.0	82.7	80.56	26	70 7	Orifice	0.25	81.7	0.001	0.002	3.14
17173 51/2 Perel Dur Peel Manepal 620798 300 BABCIN F 2400 NO NO NO SM0 Perel Mode SM0 Constraint Mode SM0 Perel Mode SM0 ADD SM0 VPE SM1 Constraint Mode ADD SM1 SM1 Constraint Mode ADD SM1 Mode ADD SM1 Constraint ADD ADD SM1 Constraint ADD			-																				Office	0.23				15.11
11713 SU13 Tark Chamber Muncpi 1222211 901 UMUNTPACE 2700 NO NO NO <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00/00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Orifice</td> <td>0.45</td> <td></td> <td></td> <td></td> <td>20.79</td>			-										00/00										Orifice	0.45				20.79
11713 SU14 Turk Oruse Marceya 6302000 3281 SULE TR 630 NO YE3 Marceya 6302000 3281 Marceya 6302000 3393 Marceya 6302000 3303 Marceya 63020000 Marceya 63		-	-								-		B49052	-								-	-					4.37
117130 SUIG Pand Wet Pand Muncipal 0.030200 390 ABB MSSICM HWY 20000 NO NO YES Loc NO 590:18 Composition 4.0 2 Composition Composition <td>117153</td> <td>SU14</td> <td>Tank</td> <td>Chamber</td> <td></td> <td>6/30/2000</td> <td>3281 SADDLE ST</td> <td>636.0</td> <td>NO</td> <td>NO</td> <td>YES</td> <td></td> <td>46751</td> <td>YES</td> <td>281.8</td> <td></td> <td>0.8027</td> <td>637.0</td> <td>61.2</td> <td>57.17</td> <td>53</td> <td>57.2</td> <td>Orifice</td> <td>0.3</td> <td>58.1</td> <td>0.003</td> <td>0.003</td> <td>3.41</td>	117153	SU14	Tank	Chamber		6/30/2000	3281 SADDLE ST	636.0	NO	NO	YES		46751	YES	281.8		0.8027	637.0	61.2	57.17	53	57.2	Orifice	0.3	58.1	0.003	0.003	3.41
111144 SUT Pord Wet Pord Manipal 0.000 NO NO YES Calm Calm Solit Calm	247414	SU15	Pond	Wet Pond	Municipal	6/30/2005	33825 VALLEY RD	3550.0	NO	NO	NO			YES	4301.0		1658	139238.0	4.0	2								0.00
2k13 9.01 Wei Pond Mulique 100/000 Abb MeSiON HW7 788.0 NO NO NO NO NO VES 2557.4 VES 2577.4 0 317.0 4.0 2 NO NO NO <t< td=""><td>117438</td><td>SU16</td><td>Pond</td><td>Wet Pond</td><td>Municipal</td><td>6/30/2000</td><td>3950 ABB MISSION HWY</td><td>22000.0</td><td>NO</td><td>NO</td><td>YES</td><td></td><td></td><td>NO</td><td>15061.8</td><td></td><td></td><td>78220.0</td><td>4.0</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	117438	SU16	Pond	Wet Pond	Municipal	6/30/2000	3950 ABB MISSION HWY	22000.0	NO	NO	YES			NO	15061.8			78220.0	4.0	2								
BU19- B	117448	SU17	Pond	Wet Pond	Municipal	6/30/2000	3950 ABB MISSION HWY	90000.0	NO	NO	YES			NO	89468.7			300153.0	4.0	2								1
MILLake Pend With repnd With repnd With repnd With repnd With repnd With repnd Single Image Single Image Single Image Single Single Single	242138	SU18	Pond	Wet Pond	Municipal	12/5/2012	3950 ABB MISSION HWY	7889.0	NO	NO	NO			YES	22557.4			38171.0	4.0	2								
Production Unitable Completable Statutes Completable Statutes Completable Statutes 117787 <			Pond	Wet Pond	Municipal												196.9964	293279.0	53.0	51.65					51.9	1.053	1.188	5.35
117185 Tank Chamber Municipal 6/30/2004 278/3 FRASER HWY 480.0 No Yes Flow Control Wall NO Yes 228/15 2000.0 32.10 9911.00 105.50 101.77 Kirol 101.77 Weir 5.50 10.49.2 0.081 1 117179 Tank Chamber Municipal 6/30/2004 3172 STATION RD 121.30 No Yes Flow Control Wall NO Yes 278.6 780.0 4.55 121.30 105.28 101.77 157.00 101.77 Weir 5.50 104.92 0.081 1 117178 Tank Chamber Municipal 6/30/2004 3372 STATION RD 121.30 No Yes Flow Control Wall NO Yes 286.0 4.66 126.00 33.6 31.15 79 30.55 Centrol Wall NO Yes Flow Control Wall NO Yes 43.0 4.06 126.00 35.73 56 57.15 0.60.2 0.012 4.00.00 30.00 60.8 No No No <t< td=""><td></td><td></td><td></td><td></td><td>Municipal</td><td>6/30/1980</td><td>32981 ASPEN AVE</td><td>7200.0</td><td>YES</td><td>YES</td><td>NO</td><td></td><td></td><td>NO</td><td>6223.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>u</td></t<>					Municipal	6/30/1980	32981 ASPEN AVE	7200.0	YES	YES	NO			NO	6223.5													u
117137 Tank Chamber Municipal 6302000 2783 FRASE RHWY 50420 No Yes Flow Control Wall NO Yes 2783 Flow Control Wall NO Yes 2783 Flow Control Wall NO Yes 2783 Flow Control Wall NO Yes 780.0 1052 101.77 157.00 101.77 167.00 101.77 <td>Pond Withou</td> <td>t Detailed</td> <td>Studies Con</td> <td>npleted</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	Pond Withou	t Detailed	Studies Con	npleted		-					-							-										
11773 Tank Chamber Municipal 64302004 3172 STATON RO 12130 No Yes Flow Control Wall NA Yes Flow Control Wall NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.89</td></t<>																				-								1.89
11733 Tank Chamber Municipal 6630204 3428 Multicipal 6630203 34504 StoneLEIGHAVE 1138.0 No Yes Flow Control Wall No Yes 563.0 4.06 1020.0 33.6 31.15 75 30.55 Overflow Pipe 0.2 33.6 0.020 55 117218 Tank Chamber Municipal 6630/2003 34504 StoneLEIGHAVE 1158.0 No No Yes Flow Control Mainhole 563.0 91.7 30.60 30.75 Overflow Pipe 0.2 33.6 0.020 10.2 10.20 10.20 0.03 57.3 57.3 58.0 Overflow Pipe 0.2 0.20 0.2 0.20 0.2 0.20 0.2 0.20 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.89</td>			-										-							-								1.89
117218 Tank Chamber Municipal 6/30/2003 3464 STONELEIGH AVE 11580 No No Yes Flow Control Manhole 53838 Yes 391.7 390.0 2.33 1170.00 60.3 57.3 58. 57.1 Overflow Pipe 0.3 60.2 0.012 0.3 0.012 0.013 0.01 0.013 0.01 0.013 0.01 0.013 0.01 0.013 0.01 0.013 0.01 0.013 0.01			-																					-				4.36
117502 Pond Wet Pond Municipal 6/30/1991 30872 SANDPIPE R R 118.0 No Yes Flow Control Wall N/A Yes 610.2 650.0 17.30 1185.00 71.84 69.00 300.00 69.08 Noe 71.64 0.033 1 11747 Pond Wet Pond Municipal 6/30/1991 10 NOF AUTOMALLDR 8320.0 No No Yes Control Structure 8843 Yes 4925.8 833.0 80.0 50.8 832.00 50.8 80.0 0.00 69.08 Noe 0.800 0.00 0.01 117.00 118.00 71.84 69.00 300.00 69.08 Noe 71.64 0.033 0.01 117.00 118.00 71.84 69.00 300.00 69.08 Noe 71.64 0.033 0.03			-																									5.00 4.99
117479 Pond Wet Pond Municipal 6/30/1991 10 N OF AUTOMALLDR 832.0 No No Yes Control Structure 88433 Yes 4925.8 833.00 92. 80.0 Interplay			-										-											0.3				4.99
117542 Pond Wet Pond Municipal 6/30/2005 36282 LOWER SUMAS MTN RD 288.6 No No Yes Flow Control Manhole B11922 No 538.0 9.63 289.00 50.5 48 120 46.319 Overflow Pipe 0.375 48.9 0.046 44 117591 2 Ponds Municipal 6/30/2001 1812 VEDDER WAY 1598.0 No No Yes Control Pipes B00611 Yes 747.5 220.0 8.54 4497.00 11.7 9.25 Weir 300 11.5 0.075 0.08 8 253547 Tank Chamber Municipal 6/30/2004 1425 SUMAS WAY 2695.0 No No Yes Flow Control Manhole Yes 6141.9 715.0 2.16 1076.00 185.1 182.92 0/eith wite 5.65 0.015 0.02 185.0 0.015 0.05 0.015 0.08 0.015 0.02 0.015 0.02 0.015 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.015			-										-			0000.0			-		500.00	09.00	NOTE		/ 1.04			10.66
117591 2 Pond Wet Pond Municipal 6/30/2001 1812 VEDER WAY 1580. No No Yes Control Pipes 800611 Yes 747.5 220.0 8.54 4497.00 11.7 9.25 Weir 300 11.5 0.075 0.08 88 253547 Tank Chamber Municipal 1/20/2016 AUGUSTON PKWYE 1075.0 No No Yes Flow Control Manhole Yes 6419 715.0 2.16 1076.00 185.1 182.92 65 182.92 Overflow Pipe 0.45 185 0.011 55 10759 Pond Wet Pond Municipal 6/30/2004 142 SUMAS WAY 269.0 No No Yes Flow Control Manhole Yes 1429.5 430.0 2.91 269.00 6.50 58.5 99.00 6.00 Weir 50.00 6.50 0.01 Mos Yes Flow Control Weir 51.67 Yes 1429.5 430.00 2.91 269.00 6.50 58.5 99.00 6.00 Weir 5.00 6.50 <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td>-</td><td></td><td>120</td><td>46.319</td><td>Overflow Pine</td><td>0.375</td><td>48.9</td><td></td><td></td><td>4.78</td></th<>			-																-		120	46.319	Overflow Pine	0.375	48.9			4.78
25357 Image:		2 Ponds	-										-			2200.0							-				0.08	8.78
11759 Poil Wet Poil Municipal 6/30/2004 1425 SUMAS WAY 2695.0 No No Yes Flow Control Weir 51267 Yes 1429.5 4300.0 2.91 2695.0 6.50 5.85 99.00 6.00 Weir 5.00 6.50 0.015 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>200011</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>0.00</td><td>5.00</td></t<>			-										200011		-										-		0.00	5.00
Note I			-										51267				-						-					5.14
(b): The all-size fields periods for the field of th	-																						1					
Image: Control of the service of th	1. Detention	Criteria: De	velopment By	/law (2070-2011), Appendix F,	Section No.	5-2 Storage Facility Re	quirements, State:																					
GREN Meets the 5 L/s/ha release rate Image: Constraint of the state of the	(1	(b): The allowable release rate is 5 litres per second per hectare (L/s/ha) of the net developed area or as otherwise directed by the Engineer.																										·
GREN Meets the 5 L/s/ha release rate Image: Construction of the second construction of the seco	2 Unit Flow (`olumn is Ci	ordinated as i	follows		1		-	<u>├</u>		1		+		-			1										
YELLOW Exceeds the 5 L/s/ha release rate but minor modifications would bring the facility to 5 l/s/ha Image: Construction of the facility to 5 l/s/ha	2. 01112110000		,			1		+	<u>├</u> ───┼		1		1					1					1					
		YELLOW			or modificatio	ons would brina the fac	ility to 5 l/s/ha	1	<u> </u>		1		1			1	1	1					1					
	RED Major modifications required to bring release rate to 5 L/s/ha								† †				1		-	1		1					1					

DRAINAGE MASTER PLAN

CITY OF ABBOTSFORD Drainage Master Plan Final Report June 2018

